Researchers have developed an ultrasensitive and rapid detection method using surface-enhanced Raman spectroscopy (SERS) for multiple dopings in saliva and urine, offering potential advancements in doping control measures.
A team of researchers from China Jiliang University has developed a groundbreaking method for the ultrasensitive and rapid detection of multiple doping substances in saliva and urine. The study, published in the journal Spectroscopy Letters, introduces a combination of liquid phase extraction and surface-enhanced Raman spectroscopy (SERS) to address the challenges associated with traditional doping detection methods (1).
A trace from human saliva on metal | Image Credit: © schankz - stock.adobe.com
SERS is a powerful analytical technique that can be utilized to measure saliva. In SERS, the target analytes in saliva are adsorbed onto metallic nanostructures, such as silver or gold nanoparticles, which greatly enhance the Raman scattering signal. This enhancement allows for the ultrasensitive detection of various biomolecules and analytes present in saliva. By analyzing the unique Raman spectra obtained from the adsorbed molecules, SERS can provide valuable information about the chemical composition of saliva, including the presence of specific substances, such as drugs, metabolites, or disease markers. SERS is nondestructive by nature, and therefore, it is suitable for repeated measurements on small sample volumes, enabling rapid and accurate analysis of saliva for various applications, including biomedical diagnostics and forensic investigations.
Doping abuse remains a significant concern in competitive sports worldwide. Existing analysis techniques are often expensive, cumbersome, and require complex pretreatment procedures, leading to prolonged detection times. To tackle this issue, the research team sought to establish an on-site and quick detection approach.
In their study, the scientists successfully detected four common doping substances, namely clenbuterol, methadone, oxycodone, and chlordiazepoxide, in human saliva and urine using the proposed method. The ultrasensitive nature of the technique allowed for the detection of these substances at remarkably low concentrations. The limit of detection for clenbuterol, methadone, oxycodone, and chlordiazepoxide in saliva was found to be 25, 10, 50, and 25 ng/mL, respectively. In urine samples, the limits of detection were 25, 5, 50, and 25 ng/mL, respectively.
The novel approach combines liquid phase extraction, which efficiently isolates the target compounds, with SERS, a highly sensitive analytical technique. By leveraging the unique properties of SERS, the researchers achieved rapid and accurate detection of the four doping substances. Remarkably, the synchronized detection process enabled the identification of all four substances in as little as one minute, even at a concentration as low as 100 ng/mL in both saliva and urine.
The research findings highlight the tremendous potential of surface-enhanced Raman spectroscopy in on-site and rapid detection of multiple drugs. By providing a sensitive and efficient means of doping analysis, this method could significantly contribute to the enhancement of doping control measures in various competitive sports.
The study opens up new possibilities for combating doping in sports. With further advancements in detection techniques, the fight against doping continues to gain momentum, ensuring fair and clean competition for athletes worldwide.
(1) Feng, D.; Xu, S.-S.; Wen, B.-Y.; Kathiresan, M.; Zhang, Y.-J.; Wang, A.; Zhang, F.-L.; Jin, S.; Li, J.-F. Ultrasensitive and rapid detection for multiple dopings in saliva and urine using surface-enhanced Raman spectroscopy. Spectrosc. Lett. 2023, 56 (5), 249–262. DOI: 10.1080/00387010.2023.2206474
Tip-enhanced Raman Scattering using a Chemically-modified Tip
June 9th 2025In this tutorial article, Yukihiro Ozaki explores the recent advancements and broadening applications of tip-enhanced Raman scattering (TERS), a cutting-edge technique that integrates scanning probe microscopy (SPM) with surface-enhanced Raman scattering (SERS). TERS enables highly localized chemical analysis at the nano- to subnano-scale, achieving spatial resolution well beyond the diffraction limit of light. Ozaki highlights the versatility of TERS in various experimental environments—ranging from ambient air to ultrahigh vacuum and electrochemical systems—and its powerful utility in fields such as single-molecule detection, biomolecular mechanism studies, nanomaterial characterization, and high-resolution imaging.
Machine Learning Accelerates Clinical Progress of SERS Technology
May 22nd 2025A new review in TrAC Trends in Analytical Chemistry by Alfred Chin Yen Tay and Liang Wang highlights how machine learning (ML) is transforming surface-enhanced Raman spectroscopy (SERS) into a powerful, clinically viable tool for rapid and accurate medical diagnostics.
New SERS Platform Enhances Real-Time Detection of Cardiovascular Drugs in Blood
May 13th 2025Researchers at Harbin Medical University recently developed a SERS-based diagnostic platform that uses DNA-driven “molecular hooks” and AI analysis to enable real-time detection of cardiovascular drugs in blood while eliminating interference from larger biomolecules.
The Rise of Smart Skin Using AI-Powered SERS Wearable Sensors for Real-Time Health Monitoring
May 5th 2025A new comprehensive review explores how wearable plasmonic sensors using surface-enhanced Raman spectroscopy (SERS) are changing the landscape for non-invasive health monitoring. By combining nanotechnology, AI, and real-time spectroscopy analysis to detect critical biomarkers in human sweat, this integration of nanomaterials, flexible electronics, and AI is changing how we monitor health and disease in real-time.
AI-Powered SERS Spectroscopy Breakthrough Boosts Safety of Medicinal Food Products
April 16th 2025A new deep learning-enhanced spectroscopic platform—SERSome—developed by researchers in China and Finland, identifies medicinal and edible homologs (MEHs) with 98% accuracy. This innovation could revolutionize safety and quality control in the growing MEH market.