
Lithium-based batteries are key for moving away from the combustion of fossil fuels at the point of use. ICP-OES and ICP-MS methods can measure trace-element impurities that may affect battery performance.

Lithium-based batteries are key for moving away from the combustion of fossil fuels at the point of use. ICP-OES and ICP-MS methods can measure trace-element impurities that may affect battery performance.

ICP-MS is increasingly being used to analyze complex matrices, but an ICP-MS instrument optimized for the highest sensitivity may not have the sufficient matrix tolerance to analyze high-salt samples. We describe a method to optimize plasma robustness and interference control for accurate, routine analysis of critical trace elements in undiluted seawater.

Brines from desalination plants are increasingly being seen as a source of valuable elements, such as lithium, rubidium, and cesium. We show how ICP-OES can be used to measure the concentrations of such elements in brines to assess the economic feasibility of their recovery.