On April 10, experts from across Europe, spoke about the latest trends and challenges in chemometrics at the Analytica conference in Munich, Germany. The session was chaired by Claudia Beleites, chief executive officer and owner of Chemometric GmbH, and Marcel Dahms, data analyst at LightGuard GmbH in Germany.
During the first presentation, Jean-Michael Roger, of the French National Institute for Agriculture, Food, and Environment, delivered a talk on calibration transfer and domain adaptation spectrometry, which is a chemometric technique used to apply a single spectral database and the calibration model developed using that database for multiple instruments (1).
Spectrometry-based sensors rely on indirect measurements and require a calibration model to account for variations in the parameter(s) of interest, Roger said. However, external factors such as temperature fluctuations and changes in chemical composition challenge the robustness of these models. During the presentation, Roger gave an overview of strategic approaches to address these challenges, including various correction methods and modeling techniques. The effectiveness of methodologies such as orthogonal projections and domain adaptation in improving the accuracy and stability of spectrometry-based sensor measurements was described in detail.
Next, Yulia Monakhova of the FH Aachen-University of Applied Sciences, presented a lecture on transfer and multivariate regression models between infrared (IR) and near infrared (NIR) instruments, as applied to electronic cigarettes. Chemometric techniques play a crucial role in modeling spectroscopic profiles of complex mixtures, but implementing quantitative multivariate models across different locations can be challenging due to equipment variations, she said. Monakhova spoke about direct standardization (DS) as a calibration transfer method for determining nicotine, propylene glycol, and glycerol in electronic cigarettes using IR and NIR spectrometers interchangeably. The root-mean-square error of prediction (RMSEP) values for partial least squares (PLS) models evaluated with initial calibration data and corrected test sets were comparable, she said.
Pierre Esseiva of the School of Criminal Justice at the Universitie de Lausanne in Switzerland, spoke about the use of a portable NIR device, the VIAVI microNIR, for the analysis of illicit drugs. Esseiva developed a predictive model from gas chromatography-mass spectrometry (GC–MS). The team’s research concentrated on enhancing the predictive accuracy of NIR models by integrating multisource GC–MS data using advanced statistical methods and machine learning. The lecture also addressed scalability challenges for deploying these models across diverse device types. Esseiva spoke about using strategies such as device calibration validation, real-time data analysis, and strict quality control measures to ensure stable and reliable predictions at scale.
The session ended with a lecture from Rafael Teixeira Freire, a research scientist for chemometrics at BASF in Germany. Freire spoke about how BASF has integrated chemometrics into numerous projects at the company. This overview examines BASF's adoption of chemometrics, illustrating its significance and challenges. He explored the role that chemometrics plays in role in optimizing processes, analyzing mixtures, and predicting material properties. Challenges include maintaining data integrity, scaling from lab to production, and navigating complex information systems.
Reference
1. Workman, J. J. A Review of Calibration Transfer Practices and Instrument Differences in Spectroscopy. Appl. Spectrosc. 2017, 72 (3), 340–365. DOI: 10.1177/0003702817736064
Get essential updates on the latest spectroscopy technologies, regulatory standards, and best practices—subscribe today to Spectroscopy.
AI-Powered Fusion Model Improves Detection of Microplastics in the Atmosphere
July 17th 2025Researchers from Nanjing University of Information Science & Technology have introduced a breakthrough AI-enhanced multimodal strategy for real-time detection of polyamide microplastics contaminated with heavy metals.
High-Speed Immune Cell Identification Using New Advanced Raman BCARS Spectroscopy Technique
July 16th 2025Irish researchers have developed a lightning-fast, label-free spectroscopic imaging method capable of classifying immune cells in just 5 milliseconds. Their work with broadband coherent anti-Stokes Raman scattering (BCARS) pushes the boundaries of cellular analysis, potentially transforming diagnostics and flow cytometry.
AI-Powered Raman with CARS Offers Laser Imaging for Rapid Cervical Cancer Diagnosis
July 15th 2025Chinese researchers have developed a cutting-edge cervical cancer diagnostic model that combines spontaneous Raman spectroscopy, CARS imaging, and artificial intelligence to achieve 100% accuracy in distinguishing healthy and cancerous tissue.
Drone-Mounted Infrared Camera Sees Invisible Methane Leaks in Real Time
July 9th 2025Researchers in Scotland have developed a drone-mounted infrared imaging system that can detect and map methane gas leaks in real time from up to 13.6 meters away. The innovative approach combines laser spectroscopy with infrared imaging, offering a safer and more efficient tool for monitoring pipeline leaks and greenhouse gas emissions.
How Spectroscopy Drones Are Detecting Hidden Crop Threats in China’s Soybean Fields
July 8th 2025Researchers in Northeast China have demonstrated a new approach using drone-mounted multispectral imaging to monitor and predict soybean bacterial blight disease, offering a promising tool for early detection and yield protection.