HÜBNER Photonics, manufacturer of high-performance lasers for advanced imaging, detection and analysis, proudly announces the addition of a new wavelength on the Cobolt 05-01 Series of single frequency lasers. The new Cobolt Disco™ 785 nm single-frequency laser delivers up to 500 mW in a perfect TEM00 beam. This new wavelength is an extension of the Cobolt 05-01 Series platform, and with an innovative design delivers excellent wavelength stability, a linewidth of less than 100 kHz, and spectral purity better than 70 dB without ASE background, providing the performance needed for high-resolution ultra-low frequency Raman spectroscopy measurements.
All Cobolt lasers are manufactured using proprietary HTCure™ technology and the resulting compact hermetically sealed package provides a very high level of immunity to varying environmental conditions along with exceptional reliability. With demonstrated lifetime capability and several thousand units installed in the field, Cobolt lasers have proven to deliver unmatched reliability and performance both in laboratory and industrial environments and are offered with market leading warranty terms.
Get essential updates on the latest spectroscopy technologies, regulatory standards, and best practices—subscribe today to Spectroscopy.
Rapid Sweetener Detection Achieved Through Raman Spectroscopy and Machine Learning
July 10th 2025Researchers at Heilongjiang University have developed a rapid and accurate method for detecting sweeteners in food using Raman spectroscopy combined with a Random Forest machine learning algorithm, offering a powerful tool for improving food safety.
AI Boosts SERS for Next Generation Biomedical Breakthroughs
July 2nd 2025Researchers from Shanghai Jiao Tong University are harnessing artificial intelligence to elevate surface-enhanced Raman spectroscopy (SERS) for highly sensitive, multiplexed biomedical analysis, enabling faster diagnostics, imaging, and personalized treatments.
Nanometer-Scale Studies Using Tip Enhanced Raman Spectroscopy
February 8th 2013Volker Deckert, the winner of the 2013 Charles Mann Award, is advancing the use of tip enhanced Raman spectroscopy (TERS) to push the lateral resolution of vibrational spectroscopy well below the Abbe limit, to achieve single-molecule sensitivity. Because the tip can be moved with sub-nanometer precision, structural information with unmatched spatial resolution can be achieved without the need of specific labels.
Artificial Intelligence Accelerates Molecular Vibration Analysis, Study Finds
July 1st 2025A new review led by researchers from MIT and Oak Ridge National Laboratory outlines how artificial intelligence (AI) is transforming the study of molecular vibrations and phonons, making spectroscopic analysis faster, more accurate, and more accessible.
AI and Dual-Sensor Spectroscopy Supercharge Antibiotic Fermentation
June 30th 2025Researchers from Chinese universities have developed an AI-powered platform that combines near-infrared (NIR) and Raman spectroscopy for real-time monitoring and control of antibiotic production, boosting efficiency by over 30%.