Spectroscopy E-Books
The selection of analytical methods for gas chromatography (GC)-amenable pesticides is often based on requirements for sensitivity and selectivity for regulatory needs or other monitoring requirements. Methods with both electron ionization (EI) and negative chemical ionization (NCI) are often required to cover the full range of GC–amenable pesticides at trace levels. Pesticides fragment easily in EI and CI sources such that the molecular ion is often low in abundance. NCI can provide added selectivity and sensitivity over EI methods. NCI is most commonly used in selected-ion monitoring mode. The lack of availability of parent ions for collision-induced dissociation for tandem mass spectrometry (MS) can limit the feasibility of GC–MS-MS for pesticides that significantly fragment in the ion source. Options for improving sensitivity by using of large-volume cold on column or programmable temperature vaporizer injections are presented. Read more
here
.
How Satellite-Based Spectroscopy is Transforming Inland Water Quality Monitoring
Published: April 29th 2025 | Updated: April 29th 2025New research highlights how remote satellite sensing technologies are changing the way scientists monitor inland water quality, offering powerful tools for tracking pollutants, analyzing ecological health, and supporting environmental policies across the globe.
Chinese Researchers Develop Dual-Channel Probe for Biothiol Detection
April 28th 2025Researchers at Qiqihar Medical University have developed a dual-channel fluorescent probe, PYL-NBD, that enables highly sensitive, rapid, and selective detection of biothiols in food, pharmaceuticals, and living organisms.
The fNIRS Glossary Project: A Community-Sourced Glossary of Key Terms
April 28th 2025Established to develop a community-sourced glossary covering key functional near-infrared spectroscopy (fNIRS) terms, including those related to the continuous-wave (CW), frequency-domain (FD), and time-domain (TD) NIRS techniques, the fNIRS Glossary Project features over 300 terms categorized into six key domains: analysis, experimental design, hardware, neuroscience, mathematics, and physics. It also includes abbreviations, symbols, synonyms, references, alternative definitions, and figures where relevant.