In the final part of our interview with Nick Stone, he discusses standardizing Raman technology across multiple clinical centers, and what it means to him to be attending the SciX Conference as the recipient of the Charles Mann award.
The SciX 2024 Conference will take place in Raleigh, North Carolina, this year. As an emerging destination for healthcare and information technology industries, Raleigh’s inclusion this year as the host city for SciX is fitting.
At the conference, there will be quite a few talks dedicated to the impact spectroscopy is making in clinical analysis. Much of the focus will be on the latest research in the field as well as the technological innovations being made in spectroscopic instrumentation. These are topics that we’ve explored thus far in our video interview series with Dr. Nick Stone of the University of Exeter, who is this year’s recipient of the Charles Mann award.
Dr. Stone has made significant contributions to the field of Raman spectroscopy for cancer diagnostics, collaborating with clinicians to develop real-time, minimally invasive tools (1,2). His innovations include endoscopic Raman for early cancer detection, smart Raman needles, and spatially offset Raman spectroscopy (SORS) techniques for detecting buried lesions. He also pioneered surface enhanced spatially offset Raman spectroscopy (SESORS), utilizing nanoparticles for deep-tissue imaging (1,2).
In a recent collaborative study, Stone and colleagues tackled the challenge of transferring Raman spectroscopy data across clinical centers. They analyzed spectra from human esophageal tissue collected at three different locations using identical spectrometers. Following a standardized protocol, they classified 61 tissue samples into five pathologies (1,2). Their findings revealed no significant differences in model accuracy or log-loss across centers, demonstrating that data transferability can be achieved without complex computational corrections.
In the final part of our conversation with Stone, he answers the following questions:
To view the rest of our coverage of the upcoming SciX 2024 Conference, click here: https://www.spectroscopyonline.com/conferences/scix
Chinese Researchers Develop Dual-Channel Probe for Biothiol Detection
April 28th 2025Researchers at Qiqihar Medical University have developed a dual-channel fluorescent probe, PYL-NBD, that enables highly sensitive, rapid, and selective detection of biothiols in food, pharmaceuticals, and living organisms.
New Study Reveals Insights into Phenol’s Behavior in Ice
April 16th 2025A new study published in Spectrochimica Acta Part A by Dominik Heger and colleagues at Masaryk University reveals that phenol's photophysical properties change significantly when frozen, potentially enabling its breakdown by sunlight in icy environments.
Nanometer-Scale Studies Using Tip Enhanced Raman Spectroscopy
February 8th 2013Volker Deckert, the winner of the 2013 Charles Mann Award, is advancing the use of tip enhanced Raman spectroscopy (TERS) to push the lateral resolution of vibrational spectroscopy well below the Abbe limit, to achieve single-molecule sensitivity. Because the tip can be moved with sub-nanometer precision, structural information with unmatched spatial resolution can be achieved without the need of specific labels.
AI-Driven Raman Spectroscopy Paves the Way for Precision Cancer Immunotherapy
April 15th 2025Researchers are using AI-enabled Raman spectroscopy to enhance the development, administration, and response prediction of cancer immunotherapies. This innovative, label-free method provides detailed insights into tumor-immune microenvironments, aiming to optimize personalized immunotherapy and other treatment strategies and improve patient outcomes.