ASTM’s committee on analytical chemistry for metals, ores, and related materials has developed a new method for analyzing the composition of aluminum and aluminum alloys.
ASTM’s committee on analytical chemistry for metals, ores, and related materials has developed a new method for analyzing the composition of aluminum and aluminum alloys. The test will help manufacturers, consumers, and laboratories verify that an alloy’s composition is within the needed limits through inductively coupled plasma–atomic emission spectrometry (ICP–AES). This method will soon be published as E3061, Test Method for Analysis of Aluminum and Aluminum Alloys by Inductively Coupled Plasma Atomic Emission Spectrometry (Performance Based Method).
The new method is performance based, but it also provides established preparation and analysis techniques. Additionally, the standard establishes expected repeatability of this method.
“The composition of an aluminum alloy is one factor that determines the final properties of the metal, such as strength, hardness, and durability,” said ASTM member Jeneé Jacobs. He noted that ICP–AES is currently being used in many laboratories as a replacement for wet chemistry techniques and other outdated analytical methods.
Best of the Week: SciX Award Interviews, Tip-Enhanced Raman Scattering
June 13th 2025Top articles published this week include an interview about aromatic–metal interactions, a tutorial article about the recent advancements in tip-enhanced Raman spectroscopy (TERS), and a news article about using shortwave and near-infrared (SWIR/NIR) spectral imaging in cultural heritage applications.
Hyperspectral Imaging for Walnut Quality Assessment and Shelf-Life Classification
June 12th 2025Researchers from Hebei University and Hebei University of Engineering have developed a hyperspectral imaging method combined with data fusion and machine learning to accurately and non-destructively assess walnut quality and classify storage periods.