On January 30, 2024, Chengjie Xi of the University of Florida gave a lecture at SPIE Photonics West in San Francisco, California, on how terahertz time-domain spectroscopy (THz-TDS) can be used to detect changes in integrated-circuit (IC) packaging materials (1). The lecture, showed how using THz-TDS can help the monitoring process under various conditions, allowing for insights into counterfeit IC detection.
The presentation began with Xi discussing the status of IC packaging, with each iteration being put through different means of inspection to reduce costs and enhance effectiveness. Wafer foundries and assembly testing usually happens in packaging facilities all over the world, which, according to Xi, creates opportunities for malicious vendors or individuals to negatively affect original designs through practices like implementing unwanted features, resulting in significant hardware insurance challenges. He also pointed out how supply chain vulnerabilities can extend to advanced packaging, so it is important to spend effort on assurance and detecting errors or changes in IC packaging materials.
Xi went on to explain why electromagnetic compatibility (EMC) usage for IC packaging is a better alternative. It is already used in different types of IC packaging and has been found to have multiple applications. For quad flat package (QFP) and dual in-line package (DIP) circuits, it serves as an encapsulant, meaning it helps “protect electronic components from detrimental chemical, mechanical, electrical or thermal environments” (2). Additionally, it can also be useful as underfill material, which “protects electronic products from shock, drop, and vibration and reduces the strain on fragile solder connection” (3). It can act as an underfill between two different chiplets, a chiplet and a package substrate, or a chiplet and an interposer. EMC material properties can also vary in multiple ways, such as material composition, fabrication process, and how they deal with thermal aging and moisture effects. Materials and processes can vary, with the former category including epoxy resin, hardener, and filler, and the latter including different stages of the curing process. With so many different factors at play, scientists must take note on what environmental factors can affect EMC materials, and how.
One factor that can affect EMCs is the surrounding temperature. Most EMC materials are designed to work around 150 °C, though they usually work temperatures under 200 °C. Beyond that, higher temperatures can cause oxidation within EMC components, in addition to cracks, shrinkage, aging speed increase, and internal stress, among other issues. Moisture can also be an issue. Different EMC have different water uptake percentages, and the more time spent in water, the less mechanically strong the components become. There are different ways to characterize EMC components, some destructive, like DSC (measures the hardness of packaging polymers) and DMA (measures the storage), and some nondestructive methods, like X-ray or Fourier transform infrared spectroscopy (FT-IR), that characterize either the structure or materials, respectively. It is difficult to simultaneously characterize both EMC materials and structure.
With THz-TDS, Xi said this solves multiple issues with EMC characterization. It can measure thickness, defection levels, and delamination at the same time, while THz-TDS images can better capture internal components. From his research, he sees that THz-TDS can simultaneously characterize EMC structures and materials, addressing multiple issues without need for interference. Referencing a case study, his team used THz-TDS for thermal loading characterization, specifically on an aging furnace that was used for 4 hours at 200 °C. In this instance, the images and data were able to capture THz-TDS amplitude and phase changes in different locations.
EMC materials can be difficult to characterize, but Xi said there is potential in using THz-TDS in this regard. With its versatility and recorded capabilities in different analysis conditions, he said it can help streamline analysis and prevent malicious interference from outside sources. There is further research to conduct in this regard, but THz-TDS can help better the IC packaging process as we know it.
(1) Xi, C.; Varshney, N.; Khan, M. S. M.; Dalir, H.; Asadizanjani, N. THz-TDS for IC packaging material changes detection under real-world conditions. In SPIE Photonics West, San Francisco, California, USA, January 30–31, 2024.
(2) Encapsulant. ScienceDirect 2012.https://www.sciencedirect.com/topics/chemistry/encapsulant (accessed 2023-1-30)
(3) What is Underfill? Nordson Corporation 2024. https://www.nordson.com/en/divisions/electronics-solutions/your-process/fluid-types/underfill (accessed 2023-1-30)
AI and Dual-Sensor Spectroscopy Supercharge Antibiotic Fermentation
June 30th 2025Researchers from Chinese universities have developed an AI-powered platform that combines near-infrared (NIR) and Raman spectroscopy for real-time monitoring and control of antibiotic production, boosting efficiency by over 30%.
Toward a Generalizable Model of Diffuse Reflectance in Particulate Systems
June 30th 2025This tutorial examines the modeling of diffuse reflectance (DR) in complex particulate samples, such as powders and granular solids. Traditional theoretical frameworks like empirical absorbance, Kubelka-Munk, radiative transfer theory (RTT), and the Hapke model are presented in standard and matrix notation where applicable. Their advantages and limitations are highlighted, particularly for heterogeneous particle size distributions and real-world variations in the optical properties of particulate samples. Hybrid and emerging computational strategies, including Monte Carlo methods, full-wave numerical solvers, and machine learning (ML) models, are evaluated for their potential to produce more generalizable prediction models.
Combining AI and NIR Spectroscopy to Predict Resistant Starch (RS) Content in Rice
June 24th 2025A new study published in the journal Food Chemistry by lead authors Qian Zhao and Jun Huang from Zhejiang University of Science and Technology unveil a new data-driven framework for predicting resistant starch content in rice
New Spectroscopy Methods Target Counterfeit Oral Medication Syrups
June 23rd 2025Researchers at Georgia College and Purdue University have developed a fast, low-cost method using Raman and UV–visible spectroscopy combined with chemometric modeling to accurately screen and quantify active ingredients in over-the-counter oral syrups, helping to fight counterfeit medications.
Short Tutorial: Complex-Valued Chemometrics for Composition Analysis
June 16th 2025In this tutorial, Thomas G. Mayerhöfer and Jürgen Popp introduce complex-valued chemometrics as a more physically grounded alternative to traditional intensity-based spectroscopy measurement methods. By incorporating both the real and imaginary parts of the complex refractive index of a sample, this approach preserves phase information and improves linearity with sample analyte concentration. The result is more robust and interpretable multivariate models, especially in systems affected by nonlinear effects or strong solvent and analyte interactions.