Solving complex real-world problems daily, at times, requires development of innovative new technologies. Industrial scientists, in the spectroscopy community, scour the literature and scientific conferences to buy the technology they need. At times, this new technology isn’t available, and with their companies’ support, they invent the technology needed to address these complex problems. During this session, experts from a number of different companies shared how they are improving spectroscopy technology.
The session began with “Addressing Longstanding Unmet Business Needs May Require Building Custom Instrumentation,” presented by Curtis Marcott of Light Light Solutions. To survive as a scientist in industry, it is important to address current business crises in a timely manner, as well as to prepare for future crises by acquiring (or developing in-house) technologies capable of meeting future business needs. Marcott discussed several real-world examples of how long-standing technical barriers to growing the business or recurring crises were addressed by either acquiring (or accessing) technologies externally or by developing them in house.
Rina Dukor of BioTools Inc. presented “Commercialization of VCD & ROA: Understanding the Market and Scientists." How does one build an instrument without financing? How does one penetrate that market to the most difficult audience: medicinal chemists? The answers and the rest of the story is, as they say, history. A history with lessons learned, ups and downs of business, instruments, relationships, and networking, and tremendous pride of seeing that new technique used by so many scientists to solve the life’s most fascinating molecular property: chirality.
The session concluded with the presentation, “How to Design and Build a Successful New Spectroscopy Product–A Small Business Perspective,” with James Carriere of Coherent. In this presentation, Carriere discussed the history of the founding of THz-Raman as a unique extension of Raman spectroscopy by a small filter and laser company called Ondax that had very little previous engagement with the spectroscopy community. Starting with a mix of unique laser and filter components, Ondax was able to demonstrate that it was possible to easily access the low frequency region of the Raman spectrum in a way that could translate to industrial processes.
Best of the Week: SciX Award Interviews, Tip-Enhanced Raman Scattering
June 13th 2025Top articles published this week include an interview about aromatic–metal interactions, a tutorial article about the recent advancements in tip-enhanced Raman spectroscopy (TERS), and a news article about using shortwave and near-infrared (SWIR/NIR) spectral imaging in cultural heritage applications.
New NIR/Raman Remote Imaging Reveals Hidden Salt Damage in Historic Fort
June 10th 2025Researchers have developed an analytical method combining remote near-infrared and Raman spectroscopy with machine learning to noninvasively map moisture and salt damage in historic buildings, offering critical insight into ongoing structural deterioration.
Tip-enhanced Raman Scattering using a Chemically-modified Tip
June 9th 2025In this tutorial article, Yukihiro Ozaki explores the recent advancements and broadening applications of tip-enhanced Raman scattering (TERS), a cutting-edge technique that integrates scanning probe microscopy (SPM) with surface-enhanced Raman scattering (SERS). TERS enables highly localized chemical analysis at the nano- to subnano-scale, achieving spatial resolution well beyond the diffraction limit of light. Ozaki highlights the versatility of TERS in various experimental environments—ranging from ambient air to ultrahigh vacuum and electrochemical systems—and its powerful utility in fields such as single-molecule detection, biomolecular mechanism studies, nanomaterial characterization, and high-resolution imaging.