Metrohm’s Raman spectrometers are designed to deliver insights about reaction dynamics, blending, and other processes. According to the company, the spectrometers provide qualitative and quantitative chemical information and are easy to integrate into production or in situ experiments.
Metrohm USA, Inc., Riverview, FL. www.metrohm.com
Real-Time Monitoring of Spike Protein Purification Using Raman and NIR Spectroscopy
August 26th 2024Researchers at Budapest University of Technology and Economics have developed a novel method for real-time monitoring of the protein purification process using Raman and near-infrared (NIR) spectroscopy. Their study compares the effectiveness of these two spectroscopic techniques in tracking the removal of imidazole, a process-related impurity, during the purification of the SARS-CoV-2 spike protein's receptor-binding domain (RBD).
New Fiber-Dispersive Raman Spectrometer Breaks Ground in Spaceborne Biomarker Detection
August 21st 2024Researchers from Humboldt-Universität zu Berlin and the German Aerospace Center (DLR) have developed a cutting-edge fiber-dispersive Raman spectrometer (FDRS) capable of detecting low-density biological matter in space. By combining a single-photon detector with a dispersive optical fiber element, the team achieved a breakthrough in in-situ Raman spectroscopy, promising unprecedented sensitivity and reliability in the search for extraterrestrial rudimentary life.
Revealing the Depths: Comparing SORS and Micro-SORS for Subsurface Material Analysis
August 15th 2024A recent study explores the strengths and limitations of spatially offset Raman spectroscopy (SORS) and micro-SORS, offering new insights into their applications for non-invasive subsurface material analysis. The findings provide valuable guidelines for choosing between these techniques based on sample characteristics and analytical needs.
2D-COS Raman Technique Reveals Biocompatibility of Carbon Nanofibers
August 14th 2024An innovative study has demonstrated that two-dimensional correlation spectroscopy (2D-COS) can effectively differentiate between toxic and biocompatible carbon nanofibers (CNFs), offering a novel method for evaluating the safety of nanomaterials intended for medical use.
Breaking Boundaries in 3D Biology: The Power of Highly-Multiplexed Raman Imaging
July 30th 2024Recent advancements in highly-multiplexed Raman imaging are set to revolutionize 3D spatial biology, offering unprecedented insights into complex biological systems. This new technology, highlighted in the Royal Society of Chemistry journal Chemical Communications, was reported by researchers from Shanghai Medical College, shows promise for enhancing our understanding of physiological functions and disease progression.