A recent study looked at how the advancement of microfluidic devices has improved environmental monitoring.
Advancements in microfluidic devices over the past five years have led to significant advancements in environmental monitoring, according to a recent review article published in Lab Chip (1).
The review article, written by Charles S. Henry from Colorado State University and his colleagues, details how microfluidic devices, because of their portability, cost-effectiveness, ease of use, and rapid response capabilities, have resulted in improved environmental monitoring.
sustainability researcher with a backdrop of green energy sources and data analytics screens | Image Credit: © 1st footage - stock.adobe.com
Microfluidic devices have become indispensable tools in detecting a broad spectrum of environmental contaminants across various matrices, including air, water, and soil (1,2). They also find significant applications in agricultural monitoring (2). Henry and his team focus their review article on prominent contaminants such as heavy metals, pesticides, nutrients, microorganisms, and per- and polyfluoroalkyl substances (PFAS) (1). They highlight the numerous detection methods used for this purpose, including electrochemical, colorimetric, and fluorescent techniques, offering a critical assessment of the current state of microfluidic devices for environmental monitoring.
Starting with electrochemical detection methods, the researchers mentioned that their specificity and sensitivity make them excellent for detecting pesticides and heavy metals (1). On the other end of the spectrum, colorimetric methods are most often used in field testing. This is because of their simplicity and cost-effectiveness (1). Fluorescent methods provide high sensitivity and are particularly effective in detecting microorganisms and other biological contaminants (1). Each method's strengths and limitations are thoroughly discussed, offering insights into their applications and potential areas for improvement.
The researchers also highlighted how commercialization is affecting the widespread use of microfluidic devices. Despite their benefit in this space, microfluidic devices have encountered several challenges, such as the introduction of viable alternatives entering the market. This includes thermal transfer printing, laser cutting, screen printing, photolithography, and laminate capillary-driven microfluidics (1).
Lamination-based microfluidics, which employ layered paper, film, acrylics, and glass slides, offer strong channels with enhanced performance. These advancements eliminate the uneven flow and resistance in porous paper microchannels, suggesting a promising future for improved microfluidic systems (1). Furthermore, three-dimensional (3D) printing has emerged as a game-changer because of its intrinsic versatility, allowing for the design of microfluidic devices with various geometries and features tailored to specific applications (1). The precision of 3D printing, capable of producing devices with submicron channels, coupled with the decreasing costs of printers, makes it an attractive option for low-cost prototyping and mass manufacturing (1).
Currently, microfluidic devices are being integrated with sample preparation and detection systems in order to expand their utility and value. This integration could significantly speed up testing, reduce processing time, and enhance safeguards against contamination (1). The review emphasized the importance of broadening the approach to consider various analytes in a single run, particularly in active environmental monitoring. Detecting multiple analytes simultaneously could yield substantial economic and resource benefits, enhancing the efficiency of environmental monitoring efforts (1).
As the field continues to advance, the integration of advanced manufacturing methods and innovative detection techniques holds promise for the future of environmental monitoring. The ongoing research and development in this area, which was highlighted in this review article, will have far-reaching implications in how we detect and respond to environmental contaminants.
(1) Aryal, P.; Hefner, C.; Martinez, B.; Henry, C. S. Microfluidics in Environmental Analysis: Advancements, Challenges, and Future Prospects for Rapid and Efficient Monitoring. Lab Chip 2024, 24, 1175–1206. DOI: 10.1039/D3LC00871A
(2) Kamat, V.; Burton, L.; Venkadesh, V.; et al. Enabling Smart Agriculture through Sensor-Integrated Microfluidic Chip to Monitor Nutrient Uptake in Plants. ECS Sensors Plus 2023, 2 (4), 043201. DOI: 10.1149/2754-2726/ad024e
New Machine Learning Model Distinguishes Recycled PET with 10% Accuracy Threshold
June 9th 2025Researchers from Jinan University and Guangzhou Customs Technology Center have developed a cost-effective UV-vis spectroscopy and machine learning method to accurately identify recycled PET content as low as 10%, advancing sustainable packaging and circular economy efforts.
Microplastics Found in Deepest Reaches of Central Indian Ocean
May 28th 2025A new study published in Marine Pollution Bulletin reveals significant microplastic contamination at 5000-meter depths in the Central Indian Ocean Basin, highlighting the widespread reach of plastic pollution and the urgent need for regulatory action.
Fluorescence Spectroscopy Emerges as Rapid Screening Tool for Groundwater Contamination in Denmark
May 21st 2025A study published in Chemosphere by researchers at the Technical University of Denmark demonstrates that fluorescence spectroscopy can serve as a rapid, on-site screening tool for detecting pharmaceutical contaminants in groundwater.
China Institutions Team Up to Oxidize Toluene at Lower Temperatures
May 21st 2025Researchers from several Chinese universities have developed a low-cost, red mud-based catalyst doped with manganese oxides that efficiently oxidizes toluene at lower temperatures, offering a sustainable solution for air pollution control and industrial waste reuse.