Spectroscopy magazine is pleased to announce the addition of Gary McGeorge, PhD, to its editorial advisory board.
Spectroscopy magazine is pleased to announce the addition of Gary McGeorge, PhD, to its editorial advisory board.
McGeorge is an experienced analytical scientist with more than 13 years of industrial experience. He has led various projects in the area of PAT, non-invasive method development, materials characterization, and spectroscopic methods. He is internationally recognized in the areas of crystal form analysis, drug product analysis, and problem solving using spectroscopic methods.
He received his Ph.D. in physical chemistry from the University of Durham (United Kingdom), where his doctoral thesis focused on the analysis of nitrogen-containing dyestuffs by solid-state NMR. He then carried out post-doctoral research under Professor David M. Grant at the University of Utah on the development of methods for increasing the sensitivity of specialized carbon-13 solid-state NMR experiments — namely, magic-angle-tuning experiments that can unravel the electronic structure of large polycrystalline solids.
He joined Bristol-Myers Squibb in 1998, initially as a research investigator. Since then, he has moved up through roles of increasing responsibility to his current position as a principal scientist. In his work there, he has used a variety of methods, particularly spectroscopic techniques such as ssNMR, IR, NIR, FT-IR, Raman, and chemical imaging (Raman and NIR) for the analysis of raw materials, blends, and finished products, and for the study of polymorphism. In his current role, he is a scientific leader in a group focusing on process analytical technology (PAT) for drug product manufacturing.
He routinely chairs sessions at the EAS conference for Coblentz Society and is a reviewer for several spectroscopy and pharmaceutics-based journals.
PNNL and BaySpec Launch Compact Mass Spectrometry System for Rapid Narcotics Detection
July 8th 2025The U.S. Department of Energy’s Pacific Northwest National Laboratory’s (PNNL) VaporID, which is a newly developed portable air sampling system incorporating a miniaturized mass spectrometer (MS), can detect trace levels of fentanyl, methamphetamine, cocaine, and even explosives like TNT with great accuracy.
Radar and Soil Spectroscopy Boost Soil Carbon Predictions in Brazil’s Semi-Arid Regions
July 7th 2025A new study published in Geoderma demonstrates that combining soil spectroscopy with radar-derived vegetation indices and environmental data significantly improves the accuracy of soil organic carbon predictions in Brazil’s semi-arid regions.
Advancing Deep Soil Moisture Monitoring with AI-Powered Spectroscopy Drones
July 7th 2025A Virginia Tech study has combined drone-mounted NIR hyperspectral imaging (400 nm to 1100 nm) and AI to estimate soil moisture at root depths with remarkable accuracy, paving the way for smarter irrigation and resilient farming.