In a recent study led by scientists from the University of Chemistry and Technology in Prague, Czech Republic, used high performance liquid chromatography (HPLC) and spectroscopy to study different Tröger’s base (TB) isomers. The team of researchers published their findings in Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy (1).
Simulate Shape of covalent molecules on a periodic table background. Soft and selective focus. | Image Credit: © Aoy_Charin - stock.adobe.com
Porphyrins and complexes with metals, otherwise known as metalloporphyrins, are macrocyclic compounds that have structural motifs that play parts in various functional biomolecular systems. These systems can be used to absorb light, bind various molecules, or catalyze chemical reactions. Due to metalloporyphrins’ binding abilities, researching use in chiral recognition has been an important task. However, these compounds are also planar and achiral molecules, meaning there is a need for chemical modification before they are used in chiral recognition. A promising approach for generating chiral metalloporphyrin receptors is based on the formation of dimers of metalloporphyrins via a rigid TB chiral linker.
The TB structure has two aromatic rings perpendicular to each other which, when fused to the central bicyclic framework, enable the formation of a rigid cleft-like V-shaped scaffold possessing two nitrogen stereocenters (2). Derivatives of TB are widely used as building blocks in supramolecular chemistry and molecular engineering as rigid scaffolds, which provide well-defined spatial geometry and two fettered stereogenic centers on nitrogen atoms. In 2000, a constitutional isomer of TB, spiro-Tröger’s base (spiroTB) and its formation was first observed; however, despite years of study, little information is known about spiroTB derivatives.
In this study, the chiral properties of nickel(II) complexes of porphyrin-porphyrin Tröger's base and porphyrin-chlorin spiro-Tröger's base with phenyl or 3-methoxyphenyl substitutions in meso-positions were monitored. The enantioseparation of racemic mixtures was investigated using HPLC on an analytical ReproSil Chiral-NR column. Afterwards, the purity of the isolated enantiomers was determined using HPLC and ultraviolet–visible (UV–Vis) spectroscopy. The absolute configurations of the isolated enantiomers were determined by evaluating the Cotton effect in electronic circular dichroism spectra. The determination was supported by TDDFT calculations, in which good agreement was achieved between the experimental and simulated spectra.
Overall, the scientists observed better chromatographic resolution for spiroTB enantiomers than for standard TB enantiomers. However, for both types of enantiomers, the enantiomeric resolution was robust and enabled preparative enantioseparation of spiroTB derivatives, the first of its kind. Afterwards, the scientists were able to combine UV–Vis and electronic circular dichroism (ECD) spectroscopy with time-dependent density functional theory (TDDFT), which is a reformulation of time-dependent quantum mechanics, where the fundamental variable is the density rather than the many-body wave functions (3). This combination was used to determine the absolute configurations of all compounds, with the results being that TB and spiroTB enantiomers are eluted in the same order.
“We believe that high molar ellipticity values and superior enantioseparation of nickel(II) porphyrin-chlorin spiroTB over TB, together with its ability to absorb light and act as a catalyst, will attract the attention of scientists in various fields,” the scientists concluded in the paper (1).
(1) Navrátilová, T.; Dobšíková, K.; Králik, F.; Havlík, M.; et al. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2024, 316, 124308. DOI: 10.1016/j.saa.2024.124308
(2) Ma, C.; Sun, Y.; Yang, J.; Guo, H.; Zhang, J. Catalytic Asymmetric Synthesis of Tröger’s Base Analogues with Nitrogen Stereocenter. ACS Cent. Sci. 2023, 9 (1). 64–71. DOI: 10.1021/acscentsci.2c01121
(3) Marques, M. A. L.; Gross, E. K. U. Time-Dependent Density Functional Theory. Annu. Rev. Phys. Chem. 2004, 55, 427–455. DOI: 10.1146/annurev.physchem.55.091602.094449
New Ecofriendly Spectrophotometric Method Boosts Accuracy in Veterinary Drug Analysis
June 30th 2025A recent study showcases a cost-effective, ecofriendly UV spectrophotometric method enhanced with dimension reduction algorithms to accurately quantify veterinary drugs dexamethasone and prednisolone, offering a sustainable alternative to traditional analysis techniques.
Toward a Generalizable Model of Diffuse Reflectance in Particulate Systems
June 30th 2025This tutorial examines the modeling of diffuse reflectance (DR) in complex particulate samples, such as powders and granular solids. Traditional theoretical frameworks like empirical absorbance, Kubelka-Munk, radiative transfer theory (RTT), and the Hapke model are presented in standard and matrix notation where applicable. Their advantages and limitations are highlighted, particularly for heterogeneous particle size distributions and real-world variations in the optical properties of particulate samples. Hybrid and emerging computational strategies, including Monte Carlo methods, full-wave numerical solvers, and machine learning (ML) models, are evaluated for their potential to produce more generalizable prediction models.
New Spectroscopy Methods Target Counterfeit Oral Medication Syrups
June 23rd 2025Researchers at Georgia College and Purdue University have developed a fast, low-cost method using Raman and UV–visible spectroscopy combined with chemometric modeling to accurately screen and quantify active ingredients in over-the-counter oral syrups, helping to fight counterfeit medications.