Authors


Christoph Gasser

Latest:

In Situ Enhancement of Microplastic Raman Signals in Water Using Ultrasonic Capture

Of the 78 million tons of plastic packaging manufactured every year, approximately one-third ends up in the ocean, the air, and most foods and beverages. To monitor the proliferation of these plastics, an ultrasonic capture method is demonstrated that produces a 1500-fold enhancement of Raman signals of microplastics in water.


Matt Young

Latest:

Accurate and Precise Quantification of Arsenic and Selenium in Water and Biological Samples Through the Removal of Doubly Charged Rare Earth Element Interferences by ICP-MS

This month’s column evaluates the capability of inductively coupled plasma–mass spectrometry (ICP-MS) to reduce the impact of doubly charged rare-earth element (REE) interferences on the quantitation of the metalloids, arsenic (As), and selenium (Se) in water and biological matrices.


Virendra K. Singh

Latest:

Application of Wavelength Dispersive X-ray Fluorescence to Agricultural Disease Research

In these studies, wavelength dispersive X-ray fluorescence (WDXRF) was used to examine differences in the elemental composition of agricultural samples, comparing healthy and diseased samples of okra, papaya, and rice. Both the mineral nutrient profiles (macro and micronutrients) and toxic metals were examined, revealing common patterns.


Xiangxue Li

Latest:

In-situ Detection of Rice Using Laser Induced Breakdown Spectroscopy and Machine Learning

This research investigates the application of laser-induced breakdown spectroscopy (LIBS) and machine learning (ML) for detecting elemental composition of food, using rice as an example.


Haroon Elrasheid Tahir

Latest:

Nondestructive Spectroscopic Techniques for Detection of Fungal and Mycotoxin Infections in Food Products: A Review

Fungal infections and mycotoxin contamination in food products pose a major threat to the world population. Mycotoxins contaminate approximately 25% of the world’s food products and cause severe health problems through the utilization of affected food products. The major mycotoxins in different foods are aflatoxins, ochratoxins, fumonisins, zearalenone, trichothecenes, and deoxynivalenol. Today, various conventional and nondestructive techniques are available for the detection of mycotoxins across multiple food products. Conventional methods are time-consuming, require chemical reagents, and include many laborious steps. Therefore, nondestructive techniques like near-infrared (NIR) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, hyperspectral imaging, and the electronic nose are a priority for online detection of fungal and mycotoxin problems in different food products. In this article, we discuss recent improvements and utilization of different nondestructive techniques for the early detection of fungal and mycotoxin infections in various food products.


Adam Lanzarotta

Latest:

Analysis of Unlabeled Sibutramine in Dietary Supplements Using Surface-Enhanced Raman Spectroscopy (SERS) with Handheld Devices

This article discusses how FT-IR and SERS is being used to detect counterfeit pharmaceutical drugs.


Fei Hao

Latest:

Identification and Classification of Degradation-Indicator Grass Species in a Desertified Steppe Based on HSI-UAV

Utilizing a low-altitude unmanned aerial vehicle (UAV), a hyperspectral remote-sensing system can identify key grass species indicating grassland degradation, developing an ASI index and classification rules and leveraging spectral differences and plant senescence reflectance to effectively monitor and evaluate grassland conditions and degradation.


Maryann Cuellar

Latest:

Making Industrial Raman Spectroscopy Practical

Raman spectroscopy is a valuable process analytical technology (PAT) for many applications across multiple industries, as a result of its many advantages, such as molecular specificity, ability to be directly coupled to a reaction vessel, and compatibility with solids, liquids, gases, and turbid media.


Ruonan Zeng

Latest:

Terahertz Spectral Investigation of L-Cysteine Hydrochloride and its Monohydrate

This new terahertz method provides a theoretical reference for studying the relationship between biomolecules and water.


Alicia Bigica

Latest:

Magnetic Particles Show Promise Against Antimicrobial-Resistant Biofilms

Research presented at Pittcon 2025 demonstrated new tactics using chemometrics and spectroscopy that could help combat antibiotic resistance.


Xin Wang

Latest:

Multichannel Raman Spectral Reconstruction and Fast Imaging Based on Global Weighted Linear Regression

Raman spectroscopy is a powerful, label-free spectral imaging technique for biomedical sample measurements. The chemometric approaches described here increase the speed of data acquisition and improve the resolution of Raman images.


Huimin Cao

Latest:

Flexible Stacked Partial Least Squares for Mid-Infrared Spectroscopy Glucose Detection

A new FID-FM fusion model for infrared measurements of glucose in synthetic samples is proposed, comparing prediction performance to full PLS, SMR, XGBoost, CBR, and DSFPLS modeling methods.


Burkhard Beckhoff

Latest:

Polychromatic and Microfocused X-ray Radiation for Traceable Quantitative X-ray Fluorescence Analysis

In X-ray fluorescence (XRF) analysis, physical traceability chains are used to quantify the absolute elemental content in a sample. The physical traceability chain relies on absolute knowledge of the X-ray spectral distribution used for the excitation of the instrument and is currently used at synchrotron radiation facilities. Here, we discuss the transfer of the physical traceability chain to laboratory-based X-ray sources, which are often polychromatic, with the view to generate wider application of quantitative XRF analysis.


Yitao Chen

Latest:

Geographical Traceability of Millet by Mid-Infrared Spectroscopy and Feature Extraction

The study developed an effective mid-infrared spectroscopic identification model, combining principal component analysis (PCA) and support vector machine (SVM), to accurately determine the geographical origin of five types of millet with a recognition accuracy of up to 99.2% for the training set and 98.3% for the prediction set.


Tao Zhang

Latest:

Identification and Classification of Degradation-Indicator Grass Species in a Desertified Steppe Based on HSI-UAV

Utilizing a low-altitude unmanned aerial vehicle (UAV), a hyperspectral remote-sensing system can identify key grass species indicating grassland degradation, developing an ASI index and classification rules and leveraging spectral differences and plant senescence reflectance to effectively monitor and evaluate grassland conditions and degradation.


Qingbo Li

Latest:

Simulation of an Algorithm for Space Target Materials Identification Based on vis-NIR Hyperspectral Data

A model based on similarity regularized nonnegative matrix factorization (SRNMF) can be used in space exploration and national security applications to exploit the spatial information in an image of a space target.



Qinlong Chen

Latest:

Technological Analysis of Glazed Tiles Unearthed from Bao’ensi in Nanjing

UV-Vis-NIR can be used to understand how ancient buildings were constructed. Here, a UV-Vis-NIR and EDXRF spectrophotometer were used to analyze glazed tiles that comprised a historical site built in Ancient China.


Xian-Guang Fan

Latest:

Multichannel Raman Spectral Reconstruction and Fast Imaging Based on Global Weighted Linear Regression

Raman spectroscopy is a powerful, label-free spectral imaging technique for biomedical sample measurements. The chemometric approaches described here increase the speed of data acquisition and improve the resolution of Raman images.


Hong Zhao

Latest:

Studying the Source of Raw Material and Glaze Formula of Sky Green “Ru-type Ware” and Ru Kuan Ware by EDXRF

As this study demonstrates, energy-dispersive X-ray fluorescence (EDXRF) and multivariate statistical analysis can be used to distinguish different classes of historical artifacts, such as ancient pottery—revealing insights about theirs origin and uses.


Ji-xia Su

Latest:

Study on Estimating Total Nitrogen Content in Sugar Beet Leaves Under Drip Irrigation Based on Vis-NIR Hyperspectral Data and Chlorophyll Content

The relationship between leaf nitrogen content (LNC) and hyperspectral remote sensing imagery (HYP) was determined to construct an estimation model of the LNC of drip-irrigated sugar beets, to enable real-time monitoring of sugar beet growth and nitrogen management in arid areas.


Jianguo Pan

Latest:

Growth and Temperature-Dependent Spectral Properties of Yb3+, Tm3+ Co-Doped NaY(MoO4)2 Crystal

The possible energy transfer modes between Yb3+ and Tm3+ ions were analyzed.


Xiang Xu

Latest:

Identification of Different Dairy Products Using Raman Spectroscopy Combined with Fused Lasso Distributionally Robust Logistic Regression

To improve the robustness and accuracy of logistic regression identification method, a new Raman spectroscopy identification method was proposed that combines a distributionally robust optimization technique and fused lasso technique with logistic regression. Then, Raman spectroscopy was used to analyze two types of dairy products that were collected for anti-jamming identification testing to verify the effectiveness of the new method.


Zhong Yang

Latest:

Identification of Five Similar Cinnamomum Wood Species Using Portable Near-Infrared Spectroscopy

Portable NIR spectroscopy, combined with discrimination analysis (PLS-DA), can be used to rapidly and accurately identify five very similar wood species of the Cinnamomum genus.


John W. Olesik

Latest:

Single Particle ICP-MS: From Engineered Nanoparticles to Natural Nanoparticles

Single-particle inductively coupled plasma–mass spectrometry (spICP-MS) is becoming widely used to measure the number of nanoparticles (or other submicrometer– sized particles) per mL with a particular elemental chemical composition and the average particle size (diameter) or particle size distribution.


SPECTRO

Latest:

ED-XRF Can Do What Now?

Webinar Date/Time: Thu, Jun 22, 2023 2:00 PM EDT


Hamamatsu Photonics Europe

Latest:

Tackling Water Quality with UV Technology

With intensifying global concerns surrounding water quality, explore the benefits of UV spectroscopy for water quality management, including real-time monitoring.


Martin Winter

Latest:

Analysis of Deposition Patterns and Influencing Factors of Lithium and Transition Metals Deposited on Lithium Ion Battery Graphitic Anodes by LA-ICP-MS

A comprehensive understanding of aging phenomena and the resulting performance loss occurring in lithium-ion batteries (LIBs) is essential for ongoing improvement of the technology. The formation of a uniform solid electrolyte interphase (SEI) is of crucial importance for the performance, lifetime, and safety of LIBs. Transition metal dissolution (TMD), caused by degradation of the cathode, and subsequent TM deposition on the anode surface can deteriorate the protective properties of the SEI, possibly leading to reconstruction of the SEI and loss of active lithium. We explore this topic here.


Wenli Tian

Latest:

Detection of Acute Kidney Injury Induced by Gentamicin in a Rat Model by Aluminum-Foil-Assisted ATR-FT-IR Spectroscopy

A recent study used aluminum foil-assisted ATR-FT-IR spectroscopy to detect acute kidney injury (AKI) in a rat model using plasma samples. The results show how ATR-FT-IR could be used to study more types of clinical samples in the future.


Chunying Ma

Latest:

Spectrophotometric Determination of Thiosulfate in Desulfurization Solutions by Decoloration of Methylene Blue

To ensure the stable operation of fuel plant desulfurization systems, it is critical to maintain the content of thiosulfate within an appropriate range. This new method for thiosulfate determination is highly sensitive and easy to perform.