Authors


Tongrui An

Latest:

Rapid Analysis of Logging Wellhead Gases Based on Fourier Transform Infrared Spectroscopy

Fourier transform infrared (FT-IR) spectroscopy was used in this paper to rapidly analyze seven light alkanes (methane, ethane, propane, n-butane, i-butane, n-pentane, and i-pentane) in wellhead gases.


Ruiguang Zhao

Latest:

Simulation of an Algorithm for Space Target Materials Identification Based on vis-NIR Hyperspectral Data

A model based on similarity regularized nonnegative matrix factorization (SRNMF) can be used in space exploration and national security applications to exploit the spatial information in an image of a space target.


Lin Cao

Latest:

Exploring the Potential of the Yb(III) (HE)4 Complex for Oncotherapy Using UV-vis Spectroscopy

Evaluation of the UV-vis spectra of the reaction product of ytterbium (III) with hematoxylin (HE) indicates the formation of a rare earth complex that further reacts with marine mammal DNA, indicating the potential that this complex may have anti-tumor properties.



Ying-Jie Zeng

Latest:

Multichannel Raman Spectral Reconstruction and Fast Imaging Based on Global Weighted Linear Regression

Raman spectroscopy is a powerful, label-free spectral imaging technique for biomedical sample measurements. The chemometric approaches described here increase the speed of data acquisition and improve the resolution of Raman images.


Guanglu Ge

Latest:

Inductively Coupled Plasma–Mass Spectrometry (ICP-MS) Analysis of Nanomaterials for Use in Nuclear and Material Applications

Tunable diode laser absorption spectroscopy (TDLAS) is combined with an extreme learning machine (ELM) model, tailored by genetic algorithm (GA) parameter searching, to produce a more robust analytical method for trace gas analysis of ethylene.


Jun Liu

Latest:

Enhanced Raman and Mid-Infrared Spectroscopic Discrimination of Geographical Origin of Rice by Data Mining and Data Fusion

The application of data mining combined with data fusion of Raman and mid- infrared spectra was studied to improve discrimination ability for modeling the geographical origins of rice.


Bharat R. Mankani

Latest:

Raman Spectroscopy: Bringing Inline Analysis to Production

New Raman spectroscopy applications are emerging in non-traditional fields because of advances in easy-to-use commercial Raman spectroscopy instrumentation. With improvements in lasers, optics, and detectors, Raman spectroscopy has developed into a powerful measurement solution for manufacturing and quality control applications.


Mark R. Zierden

Latest:

Applications of Micro X-Ray Fluorescence Spectroscopy in Food and Agricultural Products

In recent years, advances in X-ray optics and detectors have enabled the commercialization of laboratory μXRF spectrometers with spot sizes of ~3 to 30 μm that are suitable for routine imaging of element localization, which was previously only available with scanning electron microscopy (SEM-EDS). This new technique opens a variety of new μXRF applications in the food and agricultural sciences, which have the potential to provide researchers with valuable data that can enhance food safety, improve product consistency, and refine our understanding of the mechanisms of elemental uptake and homeostasis in agricultural crops. This month’s column takes a more detailed look at some of those application areas.


Petar Ševo

Latest:

Spectral Sensing Using a Handheld NIR Module Based on a Fully Integrated Sensor Chip

A novel approach to NIR spectral sensing, using a miniaturized fully-integrated multipixel array of resonant-cavity-enhanced InGaAs photodetectors, enables sensors with a millimeter-scale footprint and wafer-scale fabrication. This multipixel sensor does not measure the full spectrum, but rather a limited number of spectral regions with limited resolution (50–100 nm).


Sicen Dong

Latest:

Prediction of the Size-Dependent Raman Shift of Semiconductor Nanomaterials via Deep Learning

A deep learning model for predicting the size-dependent Raman shift of semiconductor nanomaterials was demonstrated and achieved via multi-layer perceptron.


Peyton Willis

Latest:

Using an Innovative Mass Spectrometer and Non-Matrix–Matched Reference Materials to Quantify Composition of Metal Disks and Powders

Laser ablation laser ionization time-of-flight mass spectrometry (LALI-TOF-MS) can quantify elemental constituents without the need for matrix-matching, making it attractive for metals testing, particularly for additive manufacturing.


Zhuzhi Zhang

Latest:

Exploring the Potential of the Yb(III) (HE)4 Complex for Oncotherapy Using UV-vis Spectroscopy

Evaluation of the UV-vis spectra of the reaction product of ytterbium (III) with hematoxylin (HE) indicates the formation of a rare earth complex that further reacts with marine mammal DNA, indicating the potential that this complex may have anti-tumor properties.


Haolin Li

Latest:

Optical Constants of Mixed Crude Oil in Visible Waveband Based on the Double-Thickness Transmittance Method

To study the optical properties of mixed crude oil, the optical constants of samples consisting of two crude oils mixed in different proportions were obtained by the double-thickness transmittance method based on transmittance spectra.


Wen Yuan

Latest:

A Novel Fluorescence Sensor Based on the Tetrakis (4-Carboxyphenyl) Porphyrin (TCPP)-Hg2+ System for Glutathione (GSH) Detection

Glutathione (GSH) is an intracellular thiol that plays a major role in biological systems. Therefore, the development of effective probes that can detect GSH elicits significant attention.


Fengzhu Liu

Latest:

Model for Retrieving Leaf Chlorophyll Using the Wavelet Analysis Algorithm with the Prospect Radiative Transfer Model and Vis-NIR Spectra

Spectral reflectance is a non-destructive method that is applicable to remote sensing and may be used to measure the chlorophyll content in a crop, which indicates the photosynthetic capacity, growth cycles, and degrees of stress (such as disease, insect infestation, and heavy metal stress) on plant ecosystems. This vis-NIR spectral reflectance method measures leaf chlorophyll using a wavelet analysis algorithm approach.


Zhaoxia Zhang

Latest:

Multiscale Convolutional Neural Network of Raman Spectra of Human Serum for Hepatitis B Disease Diagnosis

A multiscale convolutional neural network (MsCNN) was used to screen Raman spectra of the hepatitis B serum, achieving higher classification accuracy compared to traditional machine learning methods.


Moustafa Sayem El-Daher

Latest:

Effect of Tissue Optical Properties on the Fluorescence of BODIPY Derivative as a Photosensitizer for Photodynamic Therapy

Photodynamic therapy is widely used as an established biomedical optical modality for the conservative treatment of tumors. This work investigates laser-induced fluorescence spectroscopy of the emerging photodynamic photosensitizer BODIPY-520 in turbid media.


Bangxing Han

Latest:

Handheld Near-Infrared Spectrometers: Reality and Empty Promises

In celebration of Spectroscopy’s 35th Anniversary, leading experts discuss important issues and challenges in analytical spectroscopy.


Ehab F. Elkady

Latest:

Resolving Analytical Challenges in Pharmaceutical Process Monitoring Using Multivariate Analysis Methods: Applications in Process Understanding, Control, and Improvement

In this review, we show a wide range of examples of the expanding use of multivariate analysis (MVA) in pharmaceutical manufacturing and control. MVA is being used to resolve numerous analytical challenges, such as overcoming matrix effects, extracting reliable data from dynamic matrices, and more.



Bin Chen

Latest:

Stable Variable Selection Method and Comparison for Quantitative Analysis of Steels Using Laser-Induced Breakdown Spectroscopy

In this work, a stable variable selection method based on variable stability correction (VSC) and modified iterative predictor weighting-partial least squares (mIPW-PLS) is proposed for the quantitative analysis of steel samples by laser-induced breakdown spectroscopy (LIBS).


Faten Farouk

Latest:

Resolving Analytical Challenges in Pharmaceutical Process Monitoring Using Multivariate Analysis Methods: Applications in Process Understanding, Control, and Improvement

In this review, we show a wide range of examples of the expanding use of multivariate analysis (MVA) in pharmaceutical manufacturing and control. MVA is being used to resolve numerous analytical challenges, such as overcoming matrix effects, extracting reliable data from dynamic matrices, and more.


Tong Wu

Latest:

Rapid Analysis of Logging Wellhead Gases Based on Fourier Transform Infrared Spectroscopy

Fourier transform infrared (FT-IR) spectroscopy was used in this paper to rapidly analyze seven light alkanes (methane, ethane, propane, n-butane, i-butane, n-pentane, and i-pentane) in wellhead gases.


Yuan Zhang

Latest:

Chemical Vapor Generation Non-Dispersive Atomic Fluorescence Spectrometry Technique for the Determination of Arsenic, Antimony, Selenium, and Mercury in Geological Samples by One-Time Digestion

In this paper, a one-time digestion method for the determination of arsenic (As), antimony (Sb), selenium (Se), and mercury (Hg) in geological samples was established.


Ziniu Zhao

Latest:

Rapid Determination of the Peroxide Value of Edible Oil by Handheld NIR Spectroscopy in Combination with Wavelength Variables Selection and PLS Calibration

A PLS model was built with optimized wavelength variables generated by a competitive adaptive reweighted sampling (CARS) algorithm, enabling the use of handheld NIR spectroscopy to rapidly detect peroxide values in oil.


Lars Michael Skjolding

Latest:

Single-Cell Analysis by Inductively Coupled Plasma–Time-of-Flight Mass Spectrometry to Quantify Algal Cell Interaction with Nanoparticles by Their Elemental Fingerprint

This method detects elements intrinsically present in cells, and because sc-ICP-TOF-MS measures a full mass spectrum, no analytes are missed.


Simon Wiemers-Meyer

Latest:

Analysis of Deposition Patterns and Influencing Factors of Lithium and Transition Metals Deposited on Lithium Ion Battery Graphitic Anodes by LA-ICP-MS

A comprehensive understanding of aging phenomena and the resulting performance loss occurring in lithium-ion batteries (LIBs) is essential for ongoing improvement of the technology. The formation of a uniform solid electrolyte interphase (SEI) is of crucial importance for the performance, lifetime, and safety of LIBs. Transition metal dissolution (TMD), caused by degradation of the cathode, and subsequent TM deposition on the anode surface can deteriorate the protective properties of the SEI, possibly leading to reconstruction of the SEI and loss of active lithium. We explore this topic here.


Fangyuan Liang

Latest:

Flower Classification Using LIBS Combined with PCA Chemometrics

In this study, laser-induced breakdown spectroscopy (LIBS) was applied in conjunction with principal component analysis (PCA) to identify and classify flower species.


Feng Qin

Latest:

Novel LC–MS/MS Method with a Dual ESI and APCI Ion Source for Analysis of California-Regulated Pesticides and Mycotoxins in Medium-Chain Triglyceride (MCT) Oil Cannabis Tinctures

Analysis of 66 pesticides and 5 mycotoxins regulated by the State of California in cannabis tinctures were analyzed using LC–MS/MS with an ESI source, and LC–MS/MS with an APCI source. A simple, fast, and cheap acetonitrile solvent extraction method was used for sample preparation for good recovery and high throughput, and internal standards were used to compensate for ion suppression effects from the hydrophobic matrix.