Single reaction chamber (SRC) microwave digestion offers multiple benefits over traditional dry ashing for the sample preparation of heavy crude oils for trace metals analysis. These include increased sample throughput, reduced risk of contamination, more complete digestion and retention of volatile analytes.
Single reaction chamber (SRC) microwave digestion offers multiple benefits over traditional dry ashing for the sample preparation of heavy crude oils for trace metals analysis. These include increased sample throughput, reduced risk of contamination, more complete digestion and retention of volatile analytes.
The digestion of heavy crude oil samples prior to trace metal analysis by ICP-OES has traditionally been performed by dry ashing in a muffle furnace. The oil is burned off over a burner prior to ashing in a muffle furnace. The process takes several hours and requires continual operator attention. Loss of sample and cross contamination can occur due to foaming and splashing. Volatile analytes are lost and can not be measured. While closed vessel microwave digestion offers several advantages over dry ashing, a max. sample weight of ~0.2 g is considered too small for representative analysis. Single reaction chamber (SRC) microwave digestion however, can digest higher sample weights, enabling microwave digestion to be applied to the sample preparation of heavy oils.
Milestone's new UltraWAVE SRC benchtop digestion system can digest up to five heavy oil samples at a time, at up to 300 °C and 199 bar pressure. Its high temperature and pressure capability enables the complete digestion of heavy oils, which makes sample introduction to the ICP-OES easier and more routine. The UltraWAVE can digest 0.75 g of heavy oil (up to five samples simultaneously) — more than 3x higher sample weight than closed vessel digestion. Samples are simply digested in disposable glass vials: unlike dry ashing, there are no crucibles to clean. The system is fully automated: the sample is weighed into a vial, 10 mL HNO3 added and loaded into the UltraWAVE. Its walk away operation means labor costs are significantly reduced over dry ashing. The reaction chamber is pre-pressurized with N2, which eliminates cross contamination of loss of volatiles.
Figure 1: UltraWAVE digestion program with 5 x 0.75 g heavy oil: ramp to 250 °C over 30 min and hold for 10 min. The line T1 shows the actual digestion temperature achieved. The applied microwave power is automatically controlled by the system so the actual digestion temperature precisely follows the programmed temperature profile. The outer temperature of the reaction chamber also monitored (T2). Note that pressure (P) reached almost 100 bar during the run. This is due to the high weight and high organic content of the samples, which generates NOx and CO2. Pressure was released automatically at 55 min.
The Milestone UltraWAVE is able to digest heavy oils in amounts sufficient for the application with increased sample throughput and reduced labor costs compared to dry ashing. Risk of contamination and loss of volatile elements is eliminated and the superior digestion quality allows for easier analysis by ICP-OES.
Figure 2: Sample rack being loaded and samples after digestion.
Milestone Inc.
25 Controls Drive, Shelton, CT 06484
tel. (203) 925-4240, toll free (866) 995-5100, fax (203) 925-4241
Email: mwave@milestonesci.com
Website: www.milestonesci.com
Get essential updates on the latest spectroscopy technologies, regulatory standards, and best practices—subscribe today to Spectroscopy.
Specificity and the Net Analyte Signal in Full-Spectrum Analysis
July 21st 2025This tutorial addresses the critical issue of analyte specificity in multivariate spectroscopy using the concept of Net Analyte Signal (NAS). NAS allows chemometricians to isolate the portion of the signal that is unique to the analyte of interest, thereby enhancing model interpretability and robustness in the presence of interfering species. While this tutorial introduces the foundational concepts for beginners, it also includes selected advanced topics to bridge toward expert-level applications and future research. The tutorial covers the mathematical foundation of NAS, its application in regression models like partial least squares (PLS), and emerging methods to optimize specificity and variable selection. Applications in pharmaceuticals, clinical diagnostics, and industrial process control are also discussed.
New Study Expands Nickel Autoionization Spectra to Advance Laser Isotope Separation Technologies
July 17th 2025Researchers at China’s National Key Laboratory have identified 170 nickel autoionization states using resonance ionization mass spectrometry, significantly advancing the spectral database critical for laser isotope separation and atomic spectroscopy.
AI-Powered Fusion Model Improves Detection of Microplastics in the Atmosphere
July 17th 2025Researchers from Nanjing University of Information Science & Technology have introduced a breakthrough AI-enhanced multimodal strategy for real-time detection of polyamide microplastics contaminated with heavy metals.
How Analytical Chemists Are Navigating DOGE-Driven Funding Cuts
July 14th 2025DOGE-related federal funding cuts have sharply reduced salaries, lab budgets, and graduate support in academia. Researchers view the politically driven shifts in priorities as part of recurring systemic issues in U.S. science funding during administrative transitions. The impact on Federal laboratories has varied, with some seeing immediate effects and others experiencing more gradual effects. In general, there is rising uncertainty over future appropriations. Sustainable recovery may require structural reforms, leaner administration, and stronger industry-academia collaboration. New commentary underscores similar challenges, noting scaled-back graduate admissions, spending freezes, and a pervasive sense of overwhelming stress among faculty, students, and staff. This article addresses these issues for the analytical chemistry community.