A2 Technologies (Danbury, Connecticut) has received a three-year research contract from the Federal Aviation Administration to study the effectiveness of Fourier transform?infrared spectroscopy (FT-IR) for determining damage to composite materials used in civilian aircraft applications.
A2 Technologies (Danbury, Connecticut) has received a three-year research contract from the Federal Aviation Administration to study the effectiveness of Fourier transform–infrared spectroscopy (FT-IR) for determining damage to composite materials used in civilian aircraft applications.
The project will focus on three main tasks. A2 Technologies’ handheld FT-IR system will be used to develop the methodology for determining thermal, UV, and chemical damage to composites. Once this is developed, it will be used to detect the full extent of damage in composite panels and to monitor and aid in bonding and repair processes. These methods will then be implemented to enable the system to be used by qualified nondestructive evaluation personnel in field trials. Collaborating on this project with A2 Technologies is The Center for Composite Materials at the University of Delaware.
According to Jon Frattaroli, CEO of A2 Technologies, “We are delighted that the FAA has seen the potential value of FT-IR spectroscopy as a nondestructive analysis technology for use in aircraft manufacturing and maintenance. We are excited to work with our outstanding collaborators to prove the value of this technology.”
AI and Satellite Spectroscopy Team Up to Monitor Urban River Pollution in China
April 30th 2025A study from Chinese researchers demonstrates how combining satellite imagery, land use data, and machine learning can improve pollution monitoring in fast-changing urban rivers. The study focuses on non-optically active pollutants in the Weihe River Basin and showcases promising results for remote, data-driven water quality assessments.
New Optical Modeling Method Advances Thin Film Analysis Using Spectroscopic Ellipsometry
April 30th 2025Researchers at Zhejiang University have developed an advanced optical modeling approach using spectroscopic ellipsometry, significantly enhancing the non-destructive analysis of amorphous silicon oxide thin films.