A group of researchers from the University of Texas at Arlington and the University of Texas at Dallas have created a hairbrush that is capable of monitoring brain function.
It might sound like something from straight out of a science-fiction novel, but apparently a group of researchers from the University of Texas at Arlington and the University of Texas at Dallas have created a hairbrush that is capable of monitoring brain function.
Typically, brain activity is monitored using functional near-infrared spectroscopy (fNIRS), which is a noninvasive optical technique that records neurological activity by measuring oxygen levels in the brain. However, this method is often impaired because of the subject’s hair getting in the way.
With the new research being done at the University of Texas, the device that has been developed, which is called a brush optrode, contains fiber tips that are designed to thread through hair, thus enhancing scalp contact and providing increased sensitivity.
"Using light to measure a person's thinking pattern has numerous advantages over EEGs, including ease of use, reliability, cost, portability and MRI compatibility," said Duncan McFarlane, a member of the research team at the University of Texas at Dallas.
"The conventional fibers used in fNIRS systems terminate in a large, flat bundle, and it is easy for a patient's hair to get in the way and block the signal. So we developed a new tip for the fNIRS fibers-a brush optrode that slides the fibers between the hair follicles. Signal levels increase 3- to 5-fold, and patients report that the brush optrode is considerably more comfortable than the conventional fiber ends. And the brush optrode is easier to set up, which saves time and money," said McFarlane.
Best of the Week: National Space Day, Battery Analysis
May 2nd 2025Top articles published this week include interviews from our National Space Day content series, a news story about satellite-based spectroscopy, and an interview about battery analysis conducted at SLAC National Accelerator Laboratory.
Using Spectroscopy to Measure Geochemical Transformations of Gypsum for Ca-Sulfate Detection on Mars
May 2nd 2025Research was conducted exploring the dehydration pathways of gypsum (CaSO₄·2H₂O) and its interactions with chloride (Cl) salts under a range of thermal and environmental conditions relevant to Earth and Mars.Spectroscopy spoke to Merve Yeşilbaş, corresponding author of a paper based on this work (1), about the research.
The Role of LIBS in ChemCam and SuperCam: An Interview with Kelsey Williams, Part III
May 2nd 2025In this extended Q&A interview, we sit down with Kelsey Williams, a postdoctoral researcher at Los Alamos National Laboratory (LANL), who is working on planetary instrumentation using spectroscopic techniques such as laser-induced breakdown spectroscopy (LIBS) and laser ablation molecular isotopic spectrometry (LAMIS). In Part III, Williams goes into detail about ChemCam and SuperCam and how LIBS is used in both these instruments.