New research conducted using mass spectrometers has provided insight into key areas of stroke evaluation and treatment.
New research conducted usingmass spectrometers has providedinsight into key areas of strokeevaluation and treatment.Led byMingMing Ning, a clinical neurologistand researcher at the ClinicalProteomics Research Center atMassachusetts General Hospital(Boston, Massachusetts), the researchprovides potentially significant new insightinto patent foramen ovale (PFO) and itsconnection with strokes. PFO refers to acongenital heart abnormality, which leavesopen a passage between the left and rightsides of the heart, enabling blood clots totravel from the leg to the brain.
Strokes are the leading cause ofserious long-term disability in theUnited States, and with PFO affecting25% of the worldwide population,the potential health impacts aresignificant. Identification of potentialbiomarkers in mass spectrometrydata derived from the collaborativeresearch provides scientists withnew insights into how PFO can berelated to strokes. If confirmed,these insights may be important inhelping doctors to select the mostappropriate treatment for individualPFO stroke patients.
The research, conductedby Thermo Fisher Scientific’sBiomarker Research Initiativesin Mass Spectrometry Center incollaboration with MassachusettsGeneral Hospital, Harvard University,has also led to potential insightsin the understanding of tissueplasminogen activator (tPA) instroke treatment. tPA is a drugthat can be safely administeredonly within a very short windowof time after stroke symptomsoccur. The treatment, whichworks by dissolving blood clots,has proven highly effective, butinvolves significant risks. Only 5%of patients fit the timeframe criteriawithin which it is safe to administertPA. Through the use of massspectrometry–based proteomicsworkflows, data from the researchmay help scientists identify a widerscope of patients who might benefitfrom tPA.
AI and Satellite Spectroscopy Team Up to Monitor Urban River Pollution in China
April 30th 2025A study from Chinese researchers demonstrates how combining satellite imagery, land use data, and machine learning can improve pollution monitoring in fast-changing urban rivers. The study focuses on non-optically active pollutants in the Weihe River Basin and showcases promising results for remote, data-driven water quality assessments.
New Optical Modeling Method Advances Thin Film Analysis Using Spectroscopic Ellipsometry
April 30th 2025Researchers at Zhejiang University have developed an advanced optical modeling approach using spectroscopic ellipsometry, significantly enhancing the non-destructive analysis of amorphous silicon oxide thin films.