Labcyte, Inc. (Sunnyvale, California), an acoustic dispensing company, has been awarded $1 million to create an innovative process to detect cancer-related proteins in samples, with initial work in breast cancer detection.
Labcyte, Inc. (Sunnyvale, California), an acoustic dispensing company, has been awarded $1 million to create an innovative process to detect cancer-related proteins in samples, with initial work in breast cancer detection.
Labcyte’s acoustic liquid handling enables biomarker detection by measuring multiple proteins with a MALDI mass spectrometer. Recent work with the Canary Center at Stanford (Palo Alto, California), also supported by the National Cancer Institute, showed the ability to achieve the sensitivity required for quantifying very small amounts of proteins associated with ovarian cancer. Measuring the amount of multiple proteins, and at lower cost, is an essential step in developing new diagnostic tools for disease treatment and monitoring.
“I am particularly enthusiastic about participating with Labcyte on the further development of their protein multiplexed biomarker detection platform,” Dr. Mark Stolowitz, director of the Proteomics Core Facility at the Canary Center at Stanford for Cancer Early Detection said in a statement. “This novel immunoaffinity mass spectrometry based approach exploits MALDI-TOF-MS for detection of proteotypic peptides. The platform affords sensitivity comparable to that of triple-quad mass spectrometers while providing significantly greater throughput and better precision than that obtainable from LC-MS-MS based approaches. Over the next few years, the Labcyte platform should provide the high throughput biomarker verification/validation solution that researchers have sought in conjunction with the emergence of clinical proteomics.”
In addition to working with the Canary Center, the Labcyte project includes collaboration with the Fred Hutchinson Cancer Research Center in Seattle, Washington.
Get essential updates on the latest spectroscopy technologies, regulatory standards, and best practices—subscribe today to Spectroscopy.
sCMOS vs CCD: Advancing High-Speed CARS Spectroscopy
July 14th 2025A new comparative study shows that scientific CMOS (sCMOS) cameras could rival traditional CCD detectors in certain Raman CARS spectroscopy applications, offering faster readout and dynamic range despite slightly higher noise levels.
How Analytical Chemists Are Navigating DOGE-Driven Funding Cuts
July 14th 2025DOGE-related federal funding cuts have sharply reduced salaries, lab budgets, and graduate support in academia. Researchers view the politically driven shifts in priorities as part of recurring systemic issues in U.S. science funding during administrative transitions. The impact on Federal laboratories has varied, with some seeing immediate effects and others experiencing more gradual effects. In general, there is rising uncertainty over future appropriations. Sustainable recovery may require structural reforms, leaner administration, and stronger industry-academia collaboration. New commentary underscores similar challenges, noting scaled-back graduate admissions, spending freezes, and a pervasive sense of overwhelming stress among faculty, students, and staff. This article addresses these issues for the analytical chemistry community.