Special Issues
This information is a supplementary to the article “Polarized Raman Spectroscopy of Aligned Semiconducting Single-Walled Carbon Nanotubes” that was published in the June 2016 Spectroscopy supplemental issue Raman Technology for Today’s Spectroscopists (1).
This information is supplementary to the article “Polarized Raman Spectroscopy of Aligned Semiconducting Single-Walled Carbon Nanotubes” that was published in the June 2016 Spectroscopy supplemental issue Raman Technology for Today’s Spectroscopists (1).
One way of using the Raman imaging data is to obtain an average reading for a larger area of the sample compared to a single point measurement. The boxed areas in Figure 4 represent areas where the Raman spectral measurements were averaged to produce a single Raman spectrum. The boxed area in Figure 4 on the left is an area of unaligned SWCNTs; the boxed area on the right is an area of aligned SWCNTs.
Each boxed area in Figure 4 is 11 x 47 µm (517 sq. µm) with spectra collected at a spatial resolution (pixel size) of 0.3 µm; this comes out to ~1800 individual spectra. Therefore, each boxed area produces a single Raman spectrum representing the averaged sample area. We calculated the peak area of the G-Band from the averaged spectrum collected at each polarization configuration (V_V, H_H) and took the ratio. A correction factor was applied to compensate for the reduced optical throughput in the H_H configuration. This correction factor is calculated from the silicon peak at 519 cm-1 Raman shift which is not sensitive to polarization.
Aligned s-SWCNTs Region:
Randomly-Oriented s-SWCNTs Region:
Therefore, the average optical anisotropy value for the aligned s-SWCNTs is ≈22 and for randomly oriented s-SWCNTs is ≈1.4.
The V_V and H_H polarization images were exported from OMNICxi as grayscale TIFF images having the same intensity scale. This preserved the relative numerical values of each pixel between the two images. The TIFF images were imported into ImageJ where the subsequent orientation image was created by dividing the V_V image by the H_H image (3). The resulting image was scaled by a factor of 0.882 to correct for the lower instrument throughput caused by additional polarization optics (half wave plate) when collecting the H_H image.
How Satellite-Based Spectroscopy is Transforming Inland Water Quality Monitoring
Published: April 29th 2025 | Updated: April 29th 2025New research highlights how remote satellite sensing technologies are changing the way scientists monitor inland water quality, offering powerful tools for tracking pollutants, analyzing ecological health, and supporting environmental policies across the globe.
Chinese Researchers Develop Dual-Channel Probe for Biothiol Detection
April 28th 2025Researchers at Qiqihar Medical University have developed a dual-channel fluorescent probe, PYL-NBD, that enables highly sensitive, rapid, and selective detection of biothiols in food, pharmaceuticals, and living organisms.
The fNIRS Glossary Project: A Community-Sourced Glossary of Key Terms
April 28th 2025Established to develop a community-sourced glossary covering key functional near-infrared spectroscopy (fNIRS) terms, including those related to the continuous-wave (CW), frequency-domain (FD), and time-domain (TD) NIRS techniques, the fNIRS Glossary Project features over 300 terms categorized into six key domains: analysis, experimental design, hardware, neuroscience, mathematics, and physics. It also includes abbreviations, symbols, synonyms, references, alternative definitions, and figures where relevant.