Authors


A. Tercier

Latest:

High-Resolution High-Speed LIBS Microscopy

The use of high-resolution LIBS imaging requires the reduction of acquisition time. The authors describe a new developed system that accomplishes this goal and can be used in various applications where elemental composition and elemental distribution analysis is required.


Mettler Toledo

Latest:

Facilitating Drug Development with In Situ FT-IR and Data-Rich Experimentation

Learn how Merck applies in situ FTIR in data-rich experimentation. This webcast highlights past and ongoing efforts centering on enzyme discovery and reaction engineering, underpinned by data-rich experimentation methods including high-throughput experimentation and analysis, automation, and in situ reaction analysis using novel analytical tools. Furthermore, development of a robust process optimized for a commercially relevant synthetic chemistry reactor (vs. for example a more optimal bioreactor or fermenter) will be reviewed including demonstration across scales. Live: Tues, Sept. 1, 2020 at 11am EDT | 8am PDT | 4pm BST | 5pm CEST On demand available after airing until Sept. 1, 2021


Ethan Montag

Latest:

Where Perception Meets Reality: The Science of Measuring Color

Accurately measuring and quantifying the perception of color is an ongoing challenge for scientists, but understanding spectroscopic techniques can help standardize color measurements.


Sheng Li

Latest:

Detection of Trace Tin(II) by Salicylfluoroketone Complex Fluorescence Method

A complex fluorescence method utilizing the Sn(II)-salicylfluorescein (SAF)-cetyltrimethylammonium bromide (CTMAB) system demonstrated effective detection of Sn(II) with a linear relationship between its concentration and fluorescence intensity, along with successful application in various sample matrices with high recovery rates.


Jason Birkett

Latest:

The Detection of Biomarkers and Cocaine in Fingernails Using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy

ATR-FT-IR spectroscopy can provide rapid and portable measurements in forensic applications, demonstrating its ability to rapidly detect biomarkers and the presence of cocaine in fingernails.


Ryan C. Moffet

Latest:

Real-World Application of Open-Path UV-DOAS, TDL, and FT-IR Spectroscopy for Air Quality Monitoring at Industrial Facilities

The implementation of 120 open-path spectroscopy analyzers at oil refineries has taught us lessons about compound identification, target species detectability, interferences, and data management, which can help spectroscopists generate more accurate data when monitoring air quality.


Yinan Zhao

Latest:

Combining the WGAN and ResNeXt Networks to Achieve Data Augmentation and Classification of the FT-IR Spectra of Strawberries

The details of applying deep learning algorithms and FT-IR spectra are described for classification research using the spectra of strawberries as an example.


Jörg Bettmer

Latest:

When Size Matters: ICP-MS Detection of Small Objects

Nanomaterials have a tremendous impact on our daily life, but usually in a beneficial way because of their useful properties. 



Maurangelo Petruzzella

Latest:

Spectral Sensing Using a Handheld NIR Module Based on a Fully Integrated Sensor Chip

A novel approach to NIR spectral sensing, using a miniaturized fully-integrated multipixel array of resonant-cavity-enhanced InGaAs photodetectors, enables sensors with a millimeter-scale footprint and wafer-scale fabrication. This multipixel sensor does not measure the full spectrum, but rather a limited number of spectral regions with limited resolution (50–100 nm).



Lujuan Yang

Latest:

Detection of Acute Kidney Injury Induced by Gentamicin in a Rat Model by Aluminum-Foil-Assisted ATR-FT-IR Spectroscopy

A recent study used aluminum foil-assisted ATR-FT-IR spectroscopy to detect acute kidney injury (AKI) in a rat model using plasma samples. The results show how ATR-FT-IR could be used to study more types of clinical samples in the future.


Juan Dong

Latest:

Prediction of the Harvest Time of Cabernet Sauvignon Grapes Using Near-Infrared Spectroscopy

The results in this study indicate that NIR spectroscopy is a potentially promising approach for the rapid identification of different harvest times of Cabernet Sauvignon grapes, and the proposed technique is helpful for the prediction of ripened and over-ripened Cabernet Sauvignon grapes during the harvest time.


Haichuan Lu

Latest:

Simultaneous Determination of 50 Elements in Geological Samples by ICP-MS Combined with ICP-OES

A method combining inductively coupled plasma–mass spectrometry (ICP-MS) with inductively coupled plasma–optical emission spectrometry (ICP-OES) was developed for multielement determination of 50 species of major, minor, micro, and trace, rare earth, and rare elements in geological samples.


Andrea Fiore

Latest:

Spectral Sensing Using a Handheld NIR Module Based on a Fully Integrated Sensor Chip

A novel approach to NIR spectral sensing, using a miniaturized fully-integrated multipixel array of resonant-cavity-enhanced InGaAs photodetectors, enables sensors with a millimeter-scale footprint and wafer-scale fabrication. This multipixel sensor does not measure the full spectrum, but rather a limited number of spectral regions with limited resolution (50–100 nm).


Mary Lewis

Latest:

Raman Spectroscopy in Analyzing Fats and Oils in Foods

Several types of Raman spectroscopy, including Fourier transform (FT)–Raman and dispersive Raman, are well suited to examine and understand the fat compositional heterogeneity in solid foods, identify polymorph or crystallinity, and measure fatty acid saturation.


Yang Li

Latest:

Rapid Quality Discrimination of Grape Seed Oil Using an Extreme Machine Learning Approach with Near-Infrared (NIR) Spectroscopy

Given that grape seed oil has shown beneficial effects for consumers, there is a interest in measuring oil quality and potential adulteration. This study demonstrates an effective near-infrared (NIR) spectroscopy method, using a series of machine learning approaches for wavelength variable selection, to rapidly discriminate grape seed oil adulteration.


Juanjuan Lu

Latest:

An X-ray Fluorescence (XRF) Analysis of a Molecular Layer Deposition (MLD) Method Used in Producing Cement from Phosphogypsum

Phosphogypsum can be used as an intermediary material to produce cement clinker. To monitor the quality of phosphogypsum cement, a novel molecular layer deposition X-ray fluorescence (XRF) analysis method using a glass frit was developed.


Matthew W. Perkins

Latest:

Imaging of Trace Elements Using Laser Ablation–Inductively Coupled Plasma–Mass Spectrometry: Emerging New Applications

Metallomics seeks to understand the metallobiochemistry of cells and organisms in health and disease. This article explains the principle of laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) for imaging applications and highlights its potential to provide additional insights in bioanalysis and metallomics.


Yu Yinghong

Latest:

Evaluation and Development Trends of Optical Detection Technology for Seed Vigor

In this article, the basic principles, advantages, and limitations of different optical techniques for obtaining seed vigor estimates are introduced and reviewed, and the key technology of non-destructive optical detection of single seeds will be discussed.


Kai Song

Latest:

Study of Nondestructive Testing of Nanguo Pear Quality Using Vis-NIR Spectroscopy

We propose a theoretical basis using vis-NIR spectroscopy for the development of an online nondestructive testing system for the quality of Nanguo pear fruit.


Sinan Aljalali

Latest:

Effect of Tissue Optical Properties on the Fluorescence of BODIPY Derivative as a Photosensitizer for Photodynamic Therapy

Photodynamic therapy is widely used as an established biomedical optical modality for the conservative treatment of tumors. This work investigates laser-induced fluorescence spectroscopy of the emerging photodynamic photosensitizer BODIPY-520 in turbid media.


Oleg Ryabchykov

Latest:

Real-Time Chemometric Analysis of Multicomponent Bioprocesses Using Raman Spectroscopy

In this study, a glycerol-fed, lab-scale E. coli bioprocess producing representative pharmaceutical compounds was monitored offline with a portable, high-sensitivity Raman spectrometer.


Zhongzheng Zhou

Latest:

Automatic Coal-Rock Recognition by Laser-Induced Breakdown Spectroscopy Combined with an Artificial Neural Network

An artificial neural network was combined with LIBS to provide a rapid and accurate coal-rock recognition method for unmanned coal mining.


Zhenhui Du

Latest:

Specific Recognition Technology of Infrared Absorption Spectra Based on Continuous Wavelet Decomposition

IR absorption spectroscopy technology can solve the problem of line aliasing in gas detection. Here, continuous wavelet transform was used in time-frequency analysis to improve spectral component identification and quantitative detection of gases.


Karolina Kielisczyzk

Latest:

Characterization of Street Drugs Using Handheld Fourier Transform Raman Spectroscopy

Handheld FT-Raman spectroscopy can complement GC–MS and IR in characterizing street drugs.



Bing Zhang

Latest:

Porous Chitosan Composite Membrane Tandem Laser-Induced Breakdown Spectroscopy for Detection of Metal Elements in Liquid Samples

Detecting metal elements in liquid samples cannot be done efficiently by only using LIBS, but when the technique is combined with appropriate membrane materials, rapid analysis of solution samples can be realized.


Friedhelm Rickert

Latest:

Comparison of Peristaltic Pumps Used for Sample Introduction in Inductively Coupled Plasma–Atomic Emission Spectroscopy (ICP-AES)

Inductively coupled plasma–atomic emission spectroscopy (ICP-AES) relies on the use of a peristaltic pump for sample introduction. Here, two conventional peristaltic pumps are compared with a new pump based on the “easy click” principle for the analytical figures of merit.


Jiamei Pu

Latest:

Exploring the Potential of the Yb(III) (HE)4 Complex for Oncotherapy Using UV-vis Spectroscopy

Evaluation of the UV-vis spectra of the reaction product of ytterbium (III) with hematoxylin (HE) indicates the formation of a rare earth complex that further reacts with marine mammal DNA, indicating the potential that this complex may have anti-tumor properties.