The use of high-resolution LIBS imaging requires the reduction of acquisition time. The authors describe a new developed system that accomplishes this goal and can be used in various applications where elemental composition and elemental distribution analysis is required.
Software tools for ICP-MS and ICP-OES can help analysts to simplify method setup and reduce the potential for errors.
Although not as widespread in terms of units used worldwide as quadrupole-based inductively coupled plasma–mass spectrometry (ICP-MS) equipment, also multicollector ICP-MS (MC-ICP-MS) instrumentation has revolutionized many fields.
Surface hardness is one of the most important parameters which describes the degree of aging in polyvinyl chloride (PVC) cables. In this work, the hardness of PVC sheathing material was studied using laser-induced breakdown spectroscopy (LIBS).
The results in this study indicate that NIR spectroscopy is a potentially promising approach for the rapid identification of different harvest times of Cabernet Sauvignon grapes, and the proposed technique is helpful for the prediction of ripened and over-ripened Cabernet Sauvignon grapes during the harvest time.
Raman measurements of chromite minerals demonstrated that chromium content could be accurately determined, supporting a possible application of portable Raman devices on Earth or in space for mineral analysis of asteroids and planets.
Compressed tablet is the most common form of orally administered drug. The United States Pharmacopeia (USP) chapter <905> requires that dosage uniformity of such products containing less than 25 mg or less than 25% active pharmaceutical ingredients (API) by weight must be analyzed for content uniformity, which is based on the assay of each API in a number of individual dosage units.
To ensure the stable operation of fuel plant desulfurization systems, it is critical to maintain the content of thiosulfate within an appropriate range. This new method for thiosulfate determination is highly sensitive and easy to perform.
In this tutorial, Thomas G. Mayerhöfer and Jürgen Popp introduce complex-valued chemometrics as a more physically grounded alternative to traditional intensity-based spectroscopy measurement methods. By incorporating both the real and imaginary parts of the complex refractive index of a sample, this approach preserves phase information and improves linearity with sample analyte concentration. The result is more robust and interpretable multivariate models, especially in systems affected by nonlinear effects or strong solvent and analyte interactions.
Liquid chromatography coupled with high-resolution mass spectrometry (LC–HRMS) is used in combination with a comprehensive data analysis workflow to screen water samples for potentially hazardous transformation products from organic micropollutants to determine the efficacy of different water treatment methods.
Surface hardness is one of the most important parameters which describes the degree of aging in polyvinyl chloride (PVC) cables. In this work, the hardness of PVC sheathing material was studied using laser-induced breakdown spectroscopy (LIBS).
Laser ablation laser ionization time-of-flight mass spectrometry (LALI-TOF-MS) can quantify elemental constituents without the need for matrix-matching, making it attractive for metals testing, particularly for additive manufacturing.
We investigate the effect of an applied electric field on the laser-induced titanium plasma for laser induced breakdown spectroscopy (LIBS) for the purpose of assessing electron density with respect to laser energy.
Compressed tablet is the most common form of orally administered drug. The United States Pharmacopeia (USP) chapter <905> requires that dosage uniformity of such products containing less than 25 mg or less than 25% active pharmaceutical ingredients (API) by weight must be analyzed for content uniformity, which is based on the assay of each API in a number of individual dosage units.
Using confocal Raman imaging and other advanced measurement techniques, we study the localized strain characteristics of tungsten diselenide (WSe2), an important nanomaterial used for optoelectronic device applications.
Raman spectroscopy is a valuable tool for research and quality control of lithium-ion (Li-ion) batteries, which are a critical aspect of renewable energy technologies. We highlight two cases of bulk analysis of lithium compounds using Raman spectroscopy.
A rapid vis-NIR spectroscopy method for determining soil particle size and quality.
The implementation of 120 open-path spectroscopy analyzers at oil refineries has taught us lessons about compound identification, target species detectability, interferences, and data management, which can help spectroscopists generate more accurate data when monitoring air quality.
In this study, in situ Raman spectroscopy was used to detect the formation, growth, and evolution of corrosion inside a salt fog chamber. These results pave the way for monitoring the real-time observation of corrosion on metal surfaces.
In this study, the nitrophenol isomers, in solid and liquid phases, were analyzed using Raman spectroscopy, laying the groundwork for determining nitrophenol isomers in environmental monitoring with this technique.
Traditional qualitative analysis of agricultural materials using near-infrared spectroscopy can be improved using information-based classification methods, such as projection based on principal components and the Fisher criterion (PPF).
Laboratories use proficiency tests (PTs) to comply with their accreditation requirements and evaluate analysts’ performance. Laboratories regard PTs as a burdensome chore that must be successfully completed to satisfy internal or external compliance or accreditation requirements. PTs are an integral part of a quality management system (QMS) under quality assurance and control (QA/AC). Understanding the core components of the QMS is an important part of passing any PT test. Unacceptable PT results may have little to do with the result itself but reflect the use and application of statistics, standards, and methods.
Laser ablation laser ionization time-of-flight mass spectrometry (LALI-TOF-MS) can quantify elemental constituents without the need for matrix-matching, making it attractive for metals testing, particularly for additive manufacturing.
Raman spectroscopy is a valuable process analytical technology (PAT) for many applications across multiple industries, as a result of its many advantages, such as molecular specificity, ability to be directly coupled to a reaction vessel, and compatibility with solids, liquids, gases, and turbid media.
New Raman spectroscopy applications are emerging in non-traditional fields because of advances in easy-to-use commercial Raman spectroscopy instrumentation. With improvements in lasers, optics, and detectors, Raman spectroscopy has developed into a powerful measurement solution for manufacturing and quality control applications.
In this study, in situ Raman spectroscopy was used to detect the formation, growth, and evolution of corrosion inside a salt fog chamber. These results pave the way for monitoring the real-time observation of corrosion on metal surfaces.
Fourier transform infrared (FT-IR) spectroscopy was used in this paper to rapidly analyze seven light alkanes (methane, ethane, propane, n-butane, i-butane, n-pentane, and i-pentane) in wellhead gases.
In this study, X-ray fluorescence (XRF) spectroscopy was used to analyze heavy metals in five traditional Mongolian medicines, and the results were compared to those obtained using ICP-MS.
Various chemometric approaches, including four discriminant models (ELM, TLBO–ELM, KELM, and TLBO–KELM), were used to detect shrimp freshness based on near-infrared hyperspectral imaging.