In a recent study (1), researchers investigated the use of laser-induced breakdown spectroscopy (LIBS) for the quantitative measurement of lead in aerosols, as an alternative to using inductively coupled plasma with optical emission spectroscopy or mass spectrometry (ICP-OES or ICP-MS).
In a recent study (1), researchers investigated the use of laser-induced breakdown spectroscopy (LIBS) for the quantitative measurement of lead in aerosols, as an alternative to using inductively coupled plasma with optical emission spectroscopy or mass spectrometry (ICP-OES or ICP-MS).
Quantitative measurements with LIBS present several challenges. The study, by a team at CNR-ICMATE, the Institute of Condensed Matter Chemistry and Technologies for Energy in Italy, focused primarily on the investigating matrix effects, with a focus the role of the carrier gas on the LIBS signal itself and the behavior of the LIBS signal as a function of the delay time with respect to the laser pulse.
The researchers found that for delay times higher than 50 μs, the LIBS signal in air is substantially lower than the values obtained in nitrogen. At short delay times, the LIBS signal is enhanced in air compared to nitrogen. The researchers concluded that more work needs to be done to investigate the chemical kinetic mechanisms that may be responsible for the observed results.
Reference
(1) D.A. Redoglio, N. Palazzo, F. Migliorini, R. Donde, and S. De Iuliis, Appl. Spectrosc.72(4), 584–590 (2018).
Measuring Microplastics in Remote and Pristine Environments
December 12th 2024Aleksandra "Sasha" Karapetrova and Win Cowger discuss their research using µ-FTIR spectroscopy and Open Specy software to investigate microplastic deposits in remote snow areas, shedding light on the long-range transport of microplastics.
Raman Spectroscopy and Deep Learning Enhances Blended Vegetable Oil Authentication
December 10th 2024Researchers at Yanshan University have developed a groundbreaking method combining Raman spectroscopy and deep learning models to accurately identify and quantify components in blended vegetable oils.
Medical Device Testing Solutions
December 10th 2024Ensure medical device safety and compliance with our advanced testing solutions. Discover technologies that enhance reliability, meet regulatory standards, and improve patient outcomes. Download our brochure to support your device development and compliance journey.