In a recent study, laser-induced breakdown spectroscopy (LIBS) was used, for the first time, to quantitatively analyze powder materials used in additive technologies.
In a recent study (1), laser-induced breakdown spectroscopy (LIBS) was used, for the first time, to quantitatively analyze powder materials used in additive technologies. Researchers found that using LIBS to map loose metal powder attached to double-sided adhesive tape provided high reproducibility of measurements even for powder mixtures with a large range of particle densities (tungsten carbide particles in nickel alloy powder).
Calibration curve construction and accuracy estimation by the leave-one-out cross-validation procedure was used to estimate LIBS analytical capabilities for tungsten and carbon analysis. A LIBS and X-ray fluorescence (XRF) spectroscopy comparison showed better results for LIBS analysis. Improved analysis accuracy and the capability to quantify light elements (for example, carbon) demonstrated the suitability of LIBS as a technique for express on-site multielement analysis of powder materials used in additive technologies.
Reference
V.N. Lednev, P.A. Sdvizhenskii, M. Ya. Grishin, M.A. Davidov, A. Ya. Stavertiy, R.S. Tretyakov, M.V. Taksanc, and S.M. Pershin, arXiv.org (2018). https://arxiv.org/pdf/1802.00236.pdf
Testing Solutions for Metals and PFAS in Water
January 22nd 2025When it comes to water analysis, it can be challenging for labs to keep up with ever-changing testing regulations while also executing time-efficient, accurate, and risk-mitigating workflows. To ensure the safety of our water, there are a host of national and international regulators such as the US Environmental Protection Agency (EPA), World Health Organization (WHO), and the European Union (EU) that demand stringent testing methods for drinking water and wastewater. Those methods often call for fast implementation and lengthy processes, as well as high sensitivity and reliable instrumentation. This paper explains how your ICP-MS, ICP-OES, and LC-MS-MS workflows can be optimized for compliance with the latest requirements for water testing set by regulations like US EPA methods 200.8, 6010, 6020, and 537.1, along with ISO 17294-2. It will discuss the challenges faced by regulatory labs to meet requirements and present field-proven tips and tricks for simplified implementation and maximized uptime.