Fourier transform–infrared (FT-IR) spectroscopy technology has progressed considerably over the past two decades, and it is now a relatively established analytical technique for process monitoring in addition to being a standard tool in the laboratory. The inherent design of FT-IR systems makes them preferable for use as a process monitoring and analysis tool, particularly in the life science industries, which is a promising market.
Fourier transform–infrared (FT-IR)spectroscopy technology has progressed considerably over the past two decades, and it is now a relatively established analytical technique for process monitoring in addition to being a standard tool in the laboratory. The inherent design of FT-IR systems makes them preferable for use as a process monitoring and analysis tool, particularly in the life science industries, which is a promising market.
Process FT-IR life science vendor share
The core of any FT-IR instrument is the interferometer, which by its very nature provides its own internal calibration. The ability to eliminate the need for external calibration is obviously a major advantage for process instrumentation. In addition, FT- IR provides much higher signal-to-noise ratios in comparison to dispersive IT, which allows for much more rapid analysis.
The process life science market for FT-IR includes pharmaceutical, agriculture & food, and organic chemicals industries. The best known application is probably reaction monitoring, a significant portion of which falls under the definition of process analytical technology (PAT) in the pharmaceutical industry. FT-IR is also useful for identifying the level of key nutritional components in foods. The combined worldwide market for these applications for process FT-IR is estimated to be $20 million, and it is expected to see double-digit growth for some time to come.
The foregoing data were based on SDi's Market Analysis & Perspectives (MAP) report program. For more information, contact Stuart Press, Senior Consultant, Strategic Directions International, Inc., 6242 Westchester Parkway, Suite 100, Los Angeles, CA 90045, (310) 641-4982, fax: (310) 641-8851, www.strategic-directions.com.
AI-Powered Spectroscopy Faces Hurdles in Rapid Food Analysis
September 4th 2024A recent study reveals on the challenges and limitations of AI-driven spectroscopy methods for rapid food analysis. Despite the promise of these technologies, issues like small sample sizes, misuse of advanced modeling techniques, and validation problems hinder their effectiveness. The authors suggest guidelines for improving accuracy and reliability in both research and industrial settings.
Examining the Role of ATR-FT-IR Spectroscopy and Machine Learning in Wood Forensics, Part 1
September 4th 2024Wood forensics is an important field that helps authenticate wood and addresses the challenges that illegal logging brings. In this multipart article, we explore the wood forensics industry, and how spectroscopic techniques are contributing to its advancement.
Examining the Cheese Ripening Process with Mid-Infrared and Synchronous Fluorescence Spectroscopy
September 3rd 2024A joint French-Canadian study examined the ripening process of commercially popular Comté and cheddar cheeses, which are widely consumed in those countries, utilizing mid-infrared (mid-IR) and synchronous fluorescence spectroscopy (SFS) in their analysis.