A new silicon nanoparticle (SiNP) platform was developed that could potentially lead to the development of new tools for monitoring physiological activities and metabolic reactions of cells.
Researchers from the College of Chemistry at Nankai University in China have developed a novel turn-on fluorescent silicon nanoparticle (SiNP) platform for the monitoring of intracellular pH and GSH (1). The study was published in the journal Analytical Chemistry (1).
The researchers used N-(2-aminoethyl)-3-aminopropyltrimethoxysilane as the silicon source and dithiothreitol as the reducing agent to synthesize the SiNPs via a one-pot hydrothermal method (1). They found that the fluorescence intensity of the SiNPs increased along with the acidity increase, making the SiNPs an excellent pH and glutathione (GSH) sensing tool (1).
In addition, the team verified the pH and GSH sensing performance of the SiNPs in cells using confocal imaging and flow cytometry experiments (1). The SiNPs showed potential as an intracellular pH and GSH multimode fluorescent sensing platform that can distinguish between normal and cancer cells (1).
The researchers' findings could pave the way for the development of new tools for monitoring physiological activities and metabolic reactions of cells that require specific pH environments (1). Additionally, the SiNP platform could be used to develop new methods for detecting abnormal levels of GSH, which could be an indicator of oxidative stress (1).
The team plans to conduct further studies to optimize the performance of the SiNP platform for in vivo applications (1). This research could eventually lead to the development of new diagnostic and therapeutic tools for a variety of diseases that involve alterations in intracellular pH and GSH levels.
The study represents a significant advancement in the field of nanomedicine and highlights the potential of SiNPs as a versatile sensing platform for intracellular monitoring.
(1) Ma, Y.-J.; Li, S.; Qin, Y.-T.; He, X.-W.; Li, W.-Y.; Zhang, Y.-K. Multimode Sensing Platform Based on Turn-On Fluorescent Silicon Nanoparticles for Monitoring of Intracellular pH and GSH. Anal. Chem. 2023, ASAP. DOI: 10.1021/acs.analchem.3c00171
How Satellite-Based Spectroscopy is Transforming Inland Water Quality Monitoring
Published: April 29th 2025 | Updated: April 29th 2025New research highlights how remote satellite sensing technologies are changing the way scientists monitor inland water quality, offering powerful tools for tracking pollutants, analyzing ecological health, and supporting environmental policies across the globe.
Chinese Researchers Develop Dual-Channel Probe for Biothiol Detection
April 28th 2025Researchers at Qiqihar Medical University have developed a dual-channel fluorescent probe, PYL-NBD, that enables highly sensitive, rapid, and selective detection of biothiols in food, pharmaceuticals, and living organisms.
The fNIRS Glossary Project: A Community-Sourced Glossary of Key Terms
April 28th 2025Established to develop a community-sourced glossary covering key functional near-infrared spectroscopy (fNIRS) terms, including those related to the continuous-wave (CW), frequency-domain (FD), and time-domain (TD) NIRS techniques, the fNIRS Glossary Project features over 300 terms categorized into six key domains: analysis, experimental design, hardware, neuroscience, mathematics, and physics. It also includes abbreviations, symbols, synonyms, references, alternative definitions, and figures where relevant.