In this article, the authors take a look at the identification, synthesis, and characterization of impurities in Ramipril tablets.
The authors discuss the emergence of liquid chromatography coupled with tandem mass spectrometry as a complementary method to traditional methodology used for clinical applications.
The authors discuss the challenges presented by the many new applications of mass spectrometry.
The collection of blood-derived samples from preclinical and clinical trial studies onto paper-based, Guthrie-type cards is gaining momentum within the pharmaceutical industry. This approach holds the potential to minimize animal usage, improve data quality, and reduce shipping costs. However, the small sample volumes and extra matrix effects from the cards result in method development and sensitivity challenges for bioanalysts. Here, we present a discussion on the analytical challenges that both liquid chromatography and mass spectrometry face as well as present some potential solutions to these issues.
Raman confocal spectroscopy is increasingly being applied for the analysis of embedded contaminants within materials. A non-contact, non-destructive analysis method, Raman spectroscopy requires very little sample preparation, has greater spatial resolution compared to FT-IR microscopy and the confocal analysis method allows visualization of materials within a clear sample matrix. This paper will investigate the analysis of an embedded contaminant within a polymer matrix on a glass substrate.
In plant metabolomics, molecular fingerprints and additional molecular descriptors can be identified using recent developments in polarity-extended separations with serial coupling of reversed-phase LC and HILIC combined with ESI-TOF-MS.
The United States Army Research Laboratory (ARL) has been applying standoff laser-induced breakdown spectroscopy (LIBS) to hazardous material detection and determination. We describe several standoff systems that have been developed by ARL and provide a brief overview of standoff LIBS progress at ARL. We also present some current standoff LIBS results from explosive residues on organic substrates and biomaterials from different growth media. These new preliminary results demonstrate that standoff LIBS has the potential to discriminate hazardous materials in more complex backgrounds.
Microplastics from clothing, abrasive action on plastics, or engineered microbeads as found in some exfoliating cosmetics are showing up in many environmental systems. FT-IR microscopy is a useful tool in the analysis of microplastics, providing visual information, particle counts, and particle identification.
The authors introduce a compact ECD device coupled to a linear ion trap time-of-flight instrument, and use it to analyze protein phosphorylation in both offline and online modes.
Manufacturing advanced electronic devices requires the production of high-quality semiconductors and integrated circuit chips. In this article, the authors explain how GC, when coupled with ICP-MS, enables the detection of elements that are essential in semiconductor production.
Infrared microspectroscopy has led to important advances in a wide range of fields, as biologists, chemists, geologists, materials scientists, microscopists, and spectroscopists around the world have awakened to the values of nanotechnology. The small world is getting larger.
The usefulness of liquid chromatography–mass spectrometry–mass spectrometry (LC–MS-MS) methods for the unambiguous identification and quantification of pesticides in complex matrix samples is well known. Triple-quadrupole systems have proven to be useful for this task because of their high specificity in MS-MS mode and their low detection limits. However, working in MS-MS mode makes any MS system blind to other compounds of interest.
This article describes the ability to increase the sensitivity for a target compound in the presence of high-level background impurities by removing the dosing vehicle using a high-field asymmetric waveform ion mobility spectrometry gas-phase separation before mass spectrometry analysis.
Manufacturing advanced electronic devices requires the production of high-quality semiconductors and integrated circuit chips. In this article, the authors explain how GC, when coupled with ICP-MS, enables the detection of elements that are essential in semiconductor production.
The study of the photophysical and optoelectronic properties of a functioning conducting polymer device is complicated and is hampered by the complex nanostructure and morphology of the conducting polymer materials in these devices. Here we discuss an approach to investigate this issue in terms of bulk-heterojunction organic photovoltaic devices.
In this article, the authors take a look at the identification, synthesis, and characterization of impurities in Ramipril tablets.
This article describes an ion chromatography–mass spectrometry (IC-MS) method for profiling low molecular mass organic acids in consumer beverages and biomass used in biofuel production.
In this study, apple juice samples are analyzed by IC–ICP–MS to determine the concentration of six arsenic species: the two inorganic, and highly toxic, species (As (V) and As [III]) and four organic species (arsenobetaine [AsB], arsenocholine [AsC], monomethylarsonic acid [MMA], and dimethylarsinic acid [DMA]).
The misuse of androgenic anabolic steroids in sports was banned in 1976 by the International Olympic Committee and global sports community. The illegal use of anabolic steroids has reached disturbing levels worldwide. This worldwide problem is fueled partially by an ever-increasing demand for better athletic performance. The World Anti-Doping Agency has formulated strict guidelines for minimum allowable concentrations of exogenous anabolic steroids and their metabolites. The standard test methods for doping control are analyzed in urine samples with trimethyl-silyl derivatization. Urine is a complex and difficult biological matrix. This research shows the advantages of using comprehensive two-dimensional gas chromatography–time-of-flight-mass spectrometry (GCÃ-GC–TOF-MS) and illustrates the capability of GCÃ-GC-TOF-MS to be an effective instrumental option for antidoping control screening.
This article provides an overview of the instrument platforms, tools, and workflow for analyzing pesticides.