Flow-through SPS lowers reagent and sample consumption and decreases waste generation.
Flow-through SPS lowers reagent and sample consumption and decreases waste generation.
Flow-through SPS lowers reagent and sample consumption and decreases waste generation.
The quality and safety of ready-to-eat packaged foods-such as salads-is very difficult for consumers and suppliers to judge, and improving this situation is the focus of a Europe-wide research project. Part of the project is devoted to the development of better methods to detect and analyze the volatile organic compounds released from relevant food types, in an effort to identify biomarkers for quality and microbial contamination. This article examines one important food (melon) and shows how a method based on thermal desorption (TD) with gas chromatography-time-of-flight-mass spectrometry (GC–TOF-MS) can elucidate how key volatiles vary with time of storage and with the size of the melon pieces. The article highlights how such analytical information will be of value in efforts to improve the quality and safety of ready-to-eat foods.
The quality and safety of ready-to-eat packaged foods-such as salads-is very difficult for consumers and suppliers to judge, and improving this situation is the focus of a Europe-wide research project. Part of the project is devoted to the development of better methods to detect and analyze the volatile organic compounds released from relevant food types, in an effort to identify biomarkers for quality and microbial contamination. This article examines one important food (melon) and shows how a method based on thermal desorption (TD) with gas chromatography-time-of-flight-mass spectrometry (GC–TOF-MS) can elucidate how key volatiles vary with time of storage and with the size of the melon pieces. The article highlights how such analytical information will be of value in efforts to improve the quality and safety of ready-to-eat foods.
The quality and safety of ready-to-eat packaged foods-such as salads-is very difficult for consumers and suppliers to judge, and improving this situation is the focus of a Europe-wide research project. Part of the project is devoted to the development of better methods to detect and analyze the volatile organic compounds released from relevant food types, in an effort to identify biomarkers for quality and microbial contamination. This article examines one important food (melon) and shows how a method based on thermal desorption (TD) with gas chromatography-time-of-flight-mass spectrometry (GC–TOF-MS) can elucidate how key volatiles vary with time of storage and with the size of the melon pieces. The article highlights how such analytical information will be of value in efforts to improve the quality and safety of ready-to-eat foods.
There is often insufficient prevention to ensure safe swimming environments. Recreation water illness (RWI), most commonly in the form of digestional track illness as well as skin, ear, and respiratory infections, are often caused by water contamination from human waste. Stercobilin is a very stable and suitable chemical biomarker of human waste that has the potential to be used for waste monitoring in public swimming facilities. Using solid phase extraction (SPE) techniques paired with high-resolution mass spectrometry (HRMS), we have developed a robust method used for swimming pool water monitoring to create safer swimming environments.
Do the signal-to-noise ratios presented by instrument vendors accurately reflect improvements in mass spectrometers? We review factors influencing the validity of vendor SNR specifications, and argue that the statistical alternative of instrument detection limits is more consistent with regulatory guidelines and a more relevant indicator of instrument performance.
Do the signal-to-noise ratios presented by instrument vendors accurately reflect improvements in mass spectrometers? We review factors influencing the validity of vendor SNR specifications, and argue that the statistical alternative of instrument detection limits is more consistent with regulatory guidelines and a more relevant indicator of instrument performance.
Evaluation of the discrimination power of Raman spectroscopy in decreasing turnaround time in clinical diagnosis, when analyzing microcolonies from nine bacterial and one yeast species directly on solid culture medium after a shortened incubation time.
Evaluation of the discrimination power of Raman spectroscopy in decreasing turnaround time in clinical diagnosis, when analyzing microcolonies from nine bacterial and one yeast species directly on solid culture medium after a shortened incubation time.
Evaluation of the discrimination power of Raman spectroscopy in decreasing turnaround time in clinical diagnosis, when analyzing microcolonies from nine bacterial and one yeast species directly on solid culture medium after a shortened incubation time.
Evaluation of the discrimination power of Raman spectroscopy in decreasing turnaround time in clinical diagnosis, when analyzing microcolonies from nine bacterial and one yeast species directly on solid culture medium after a shortened incubation time.
Evaluation of the discrimination power of Raman spectroscopy in decreasing turnaround time in clinical diagnosis, when analyzing microcolonies from nine bacterial and one yeast species directly on solid culture medium after a shortened incubation time.
Evaluation of the discrimination power of Raman spectroscopy in decreasing turnaround time in clinical diagnosis, when analyzing microcolonies from nine bacterial and one yeast species directly on solid culture medium after a shortened incubation time.
Evaluation of the discrimination power of Raman spectroscopy in decreasing turnaround time in clinical diagnosis, when analyzing microcolonies from nine bacterial and one yeast species directly on solid culture medium after a shortened incubation time.
Evaluation of the discrimination power of Raman spectroscopy in decreasing turnaround time in clinical diagnosis, when analyzing microcolonies from nine bacterial and one yeast species directly on solid culture medium after a shortened incubation time.
Evaluation of the discrimination power of Raman spectroscopy in decreasing turnaround time in clinical diagnosis, when analyzing microcolonies from nine bacterial and one yeast species directly on solid culture medium after a shortened incubation time.
Evaluation of the discrimination power of Raman spectroscopy in decreasing turnaround time in clinical diagnosis, when analyzing microcolonies from nine bacterial and one yeast species directly on solid culture medium after a shortened incubation time.
This cost-effective approach has a limit of detection well below 1µg As/L and a linear range that extends to >100 µg As/L.
This cost-effective approach has a limit of detection well below 1µg As/L and a linear range that extends to >100 µg As/L.
This work addresses two challenges: developing a technique capable of measuring ppb levels of hormones, and developing an SPLE technique capable of extracting contaminants and hormones from a single sample without additional cleanup steps.
This work addresses two challenges: developing a technique capable of measuring ppb levels of hormones, and developing an SPLE technique capable of extracting contaminants and hormones from a single sample without additional cleanup steps.
This work addresses two challenges: developing a technique capable of measuring ppb levels of hormones, and developing an SPLE technique capable of extracting contaminants and hormones from a single sample without additional cleanup steps.
In this article, we introduce the concept of a gas exchange device (GED) and how it can be used to monitor organometallic compounds and metallic particles in specialty gases.
Ion mobility–mass spectrometry (IM-MS) is outlined as a separations method, several examples of the utility of IM-MS for complex biological measurements are illustrated, and the implications of this approach for systems biology research are discussed.