A compact standoff Raman system can be used to detect hazardous chemicals and chemicals used in homemade explosives synthesis.
Manufacturing downtime hurts your bottom line - and any downtime caused by unintentional contamination during materials processing is especially painful. With regular adherence to impurity standards and cleanliness specifications it can be significantly reduced.
This work focuses on the analysis of precious metals in simulated digested precious metal buttons, with an added emphasis on assessing the lowest limits which can be accurately measured.
This work focuses on the determination of seven non-toxic elements usually found in drinking waters with the PerkinElmer PinAAcle 500 flame AA spectrometer.
A novel adaptation to inductively coupled plasma–mass spectroscopy (ICP-MS), mass cytometry provides researchers with a tool to study the complexity of biology at the single-cell level.
A novel adaptation to inductively coupled plasma–mass spectroscopy (ICP-MS), mass cytometry provides researchers with a tool to study the complexity of biology at the single-cell level.
An interlaboratory comparison study for the measurement of arsenic species in rice, kelp, and apple juice was carried out. The purpose of the study was to enable participating laboratories to evaluate their analytical capability to determine inorganic arsenic, arsenite, arsenate, monomethylarsonic acid, and dimethylarsinic acid, assess the intercomparability of the data generated, and look for any correlation trends between the results and the analytical procedures used.
An interlaboratory comparison study for the measurement of arsenic species in rice, kelp, and apple juice was carried out. The purpose of the study was to enable participating laboratories to evaluate their analytical capability to determine inorganic arsenic, arsenite, arsenate, monomethylarsonic acid, and dimethylarsinic acid, assess the intercomparability of the data generated, and look for any correlation trends between the results and the analytical procedures used.
An interlaboratory comparison study for the measurement of arsenic species in rice, kelp, and apple juice was carried out. The purpose of the study was to enable participating laboratories to evaluate their analytical capability to determine inorganic arsenic, arsenite, arsenate, monomethylarsonic acid, and dimethylarsinic acid, assess the intercomparability of the data generated, and look for any correlation trends between the results and the analytical procedures used.
An interlaboratory comparison study for the measurement of arsenic species in rice, kelp, and apple juice was carried out. The purpose of the study was to enable participating laboratories to evaluate their analytical capability to determine inorganic arsenic, arsenite, arsenate, monomethylarsonic acid, and dimethylarsinic acid, assess the intercomparability of the data generated, and look for any correlation trends between the results and the analytical procedures used.
A newly discovered method is described for generating gas-phase ions from volatile and nonvolatile compounds. The method, matrix-assisted ionization (MAI), is both simple and sensitive, requiring only the vacuum inherent with all mass spectrometers and a suitable matrix, eliminating the need for lasers, electric fields, nebulizing gas, and even heaters to generate gas-phase ions. MAI is applicable for the direct analysis of drugs from biological fluids and tissue without prior purification. By placing matrix only on a specific surface area of interest and exposure to the vacuum of the mass spectrometer, ions are observed from compounds within the targeted surface area of tissue exposed to the matrix solution, thus allowing rapid and simple interrogation of “features of interest.” The limit of detection for drug standards is low attomoles and clean full mass range mass spectra are obtained from low femtomoles of the drug.
The main objective of this study was to evaluate the capabilities of gas chromatography (GC) with time-of-flight mass spectrometry (MS) for screening pesticides in fruits and vegetables using a purpose-built accurate-mass database.
The main objective of this study was to evaluate the capabilities of gas chromatography (GC) with time-of-flight mass spectrometry (MS) for screening pesticides in fruits and vegetables using a purpose-built accurate-mass database.
A new method was developed and validated using automated on-line solid-phase extraction (SPE) with tandem mass spectrometry (MS). Urine samples were enzyme-hydrolyzed and diluted before detection. The validated method was applied to positive authentic urine samples to evaluate concordance with high performance liquid chromatography (HPLC)–MS-MS results.
A new method was developed and validated using automated on-line solid-phase extraction (SPE) with tandem mass spectrometry (MS). Urine samples were enzyme-hydrolyzed and diluted before detection. The validated method was applied to positive authentic urine samples to evaluate concordance with high performance liquid chromatography (HPLC)–MS-MS results.
The main objective of this study was to evaluate the capabilities of gas chromatography (GC) with time-of-flight mass spectrometry (MS) for screening pesticides in fruits and vegetables using a purpose-built accurate-mass database.
The main objective of this study was to evaluate the capabilities of gas chromatography (GC) with time-of-flight mass spectrometry (MS) for screening pesticides in fruits and vegetables using a purpose-built accurate-mass database.
The main objective of this study was to evaluate the capabilities of gas chromatography (GC) with time-of-flight mass spectrometry (MS) for screening pesticides in fruits and vegetables using a purpose-built accurate-mass database.
The main objective of this study was to evaluate the capabilities of gas chromatography (GC) with time-of-flight mass spectrometry (MS) for screening pesticides in fruits and vegetables using a purpose-built accurate-mass database.
Digital waveform technology is emerging as a powerful tool in mass spectrometry (MS). Digital quadrupoles rely on precise control of frequency rather than voltage, which allows these devices to access a greatly extended mass range
Digital waveform technology is emerging as a powerful tool in mass spectrometry (MS). Digital quadrupoles rely on precise control of frequency rather than voltage, which allows these devices to access a greatly extended mass range
A newly discovered method is described for generating gas-phase ions from volatile and nonvolatile compounds. The method, matrix-assisted ionization (MAI), is both simple and sensitive, requiring only the vacuum inherent with all mass spectrometers and a suitable matrix, eliminating the need for lasers, electric fields, nebulizing gas, and even heaters to generate gas-phase ions. MAI is applicable for the direct analysis of drugs from biological fluids and tissue without prior purification. By placing matrix only on a specific surface area of interest and exposure to the vacuum of the mass spectrometer, ions are observed from compounds within the targeted surface area of tissue exposed to the matrix solution, thus allowing rapid and simple interrogation of “features of interest.” The limit of detection for drug standards is low attomoles and clean full mass range mass spectra are obtained from low femtomoles of the drug.
Novel ionization processes provide gas-phase ions of a wide variety of materials using MS. These simple and sensitive methods operate from solution or a solid matrix. Both manual and automated platforms are described that allow rapid switching between the ionization methods of MAI, SAI, vSAI, and conventional ESI.
Because of the wide variety of ways counter drugs have been entering the pharmaceutical supply chain, there is an imminent need for quick and inexpensive methods to identify drug components and quantify active ingredients. Here, we report results illustrating the screening properties of solvent assisted ionization mass spectrometry (SAI-MS) and the quantitative properties of liquid chromatography (LC)-SAI-MS. These methods offer high sensitivity, versatility, and in combination, rapid turnaround time. Suspect samples of fexofenadine hydrochloride and hydroxychloroquine were rapidly screened and compared to their legal counterparts using SAI-MS.
A summary of the most recent advances in sample preparation, instrumentation, and data-processing techniques for MALDI-IMS
Measuring thickness and optical constants of transparent films on transparent substrates can be a challenge for spectroscopic ellipsometry. The sensitivity of the HORIBA UVISEL ellipsometer allows this challenging task to be easily performed.
Sun Protection Factor (SPF) allows consumers to compare protection provided by sunscreens. Standardized methods properly evaluate the level of protection from UVA / UVB, and confirm label claims of their effectiveness.
Fraudulent mislabeling of honey is an increasing concern, due to its high-value. NIR Spectroscopy detects known and unknown adulterants in honey, quickly and easily.
An overview on the present state of analytical lipidomics is presented from the perspective of mass spectrometry (MS) and the MS strategies most frequently used in lipidomics are highlighted.
The Z-500 also analyzes base metals and trade elements, including Mg, Ti, V, Cr, Fe, Mn, Cu, Ni, and others. Trace metals of commercial interest or as pathfinders including Li, Be, B, C, and halogens including F, Cl, and Br are also analyzed. Figure 2 shows results for Li analysis, as an example. The results for lithium analysis were reasonably good. While there is some scatter in the data, the HH LIBS is measuring very low concentrations, in the 10–30 ppm concentration range. In general, the results for B, Be, Mg, Ba, and other elements were comparable, in terms of correlation, with the Li data.