A recent study used combined chemical analysis approach to investigate rat brains harvested one week after induction of photothrombotic stroke.
A recent study used combined chemical analysis approach to investigate rat brains harvested one week after induction of photothrombotic stroke (1). Researchers from Austria, the Netherlands, and Qatar used Fourier transform infrared (FT-IR) spectroscopy and laser ablation inductively coupled plasma–mass spectrometry (LA-ICP-MS) for the imaging of cerebral ischemia to obtain a deepened analysis compared to single techniques or side-by-side analysis.
The LA-ICP-MS data were normalized using an internal standard (a thin gold layer). Hyperspectral data cubes that were acquired were fused and subjected to multivariate analysis. Brain regions affected by stroke as well as unaffected gray and white matter were identified and classified using a model based on either partial least squares discriminant analysis (PLS-DA) or random decision forest (RDF) algorithms.
According to the researchers, the RDF classifier built on the combined data sets appeared to be more precise compared to classifiers built on the individual data sets. They concluded stated that multisensory hyperspectral imaging with subsequent RDF-based analysis can deepen the understanding of biochemical processes in ischemic brains and enables automated identification of different types of tissues.
Reference
Radar and Soil Spectroscopy Boost Soil Carbon Predictions in Brazil’s Semi-Arid Regions
July 7th 2025A new study published in Geoderma demonstrates that combining soil spectroscopy with radar-derived vegetation indices and environmental data significantly improves the accuracy of soil organic carbon predictions in Brazil’s semi-arid regions.
Deciphering Fossil Preservation in Brazil’s São Carlos Shale Using Analytical Spectroscopy
July 7th 2025A new study published in the Journal of South American Earth Sciences reveals how microbial activity, low pH conditions, and sediment chemistry in Brazil’s São Carlos Shale uniquely preserved diverse Upper Cretaceous fossils, offering fresh insights into the paleoenvironment of the Bauru Basin.
CRAIC Technologies Announces Launch of Maceral Identification Solution for Coal Analysis
July 3rd 2025In a press release, CRAIC Technologies announced the launch of its novel maceral identification solution that is designed to improve coal analysis. This new system contains high-speed imaging, servo-driven scanning, and intelligent software that work together to generate more accurate maceral analysis.
AI Boosts SERS for Next Generation Biomedical Breakthroughs
July 2nd 2025Researchers from Shanghai Jiao Tong University are harnessing artificial intelligence to elevate surface-enhanced Raman spectroscopy (SERS) for highly sensitive, multiplexed biomedical analysis, enabling faster diagnostics, imaging, and personalized treatments.