INESC Porto?s Optoelectronics and Electronic System Unit (Porto, Portugal) in partnership with the European Space Agency, has developed a technology that enables a more effective measurement of gases in the atmosphere than that achieved with current techniques (such as atmospheric balloons and specially equipped airplanes).
INESC Porto’s Optoelectronics and Electronic System Unit (Porto, Portugal) in partnership with the European Space Agency, has developed a technology that enables a more effective measurement of gases in the atmosphere than that achieved with current techniques (such as atmospheric balloons and specially equipped airplanes). The system consists of an ultra-narrow spectral tunable and heat-reflecting filter based on optical fiber technology that can be used to monitor the atmosphere with the reflection of laser impulses. If it is applied to satellites, this filter will be able to detect pollutant gases in the Earth’s atmosphere in concentrations less than 1 km high and 50 km wide, at an altitude of 400 km. This technology is capable of providing precise measurements of several greenhouse gases including carbon dioxide, methane, nitrous oxide, and ozone.
AI Boosts SERS for Next Generation Biomedical Breakthroughs
July 2nd 2025Researchers from Shanghai Jiao Tong University are harnessing artificial intelligence to elevate surface-enhanced Raman spectroscopy (SERS) for highly sensitive, multiplexed biomedical analysis, enabling faster diagnostics, imaging, and personalized treatments.
Artificial Intelligence Accelerates Molecular Vibration Analysis, Study Finds
July 1st 2025A new review led by researchers from MIT and Oak Ridge National Laboratory outlines how artificial intelligence (AI) is transforming the study of molecular vibrations and phonons, making spectroscopic analysis faster, more accurate, and more accessible.