Spectroscopy E-Books
Here, we examine the problem of photoluminescence from the material being analyzed and the substrate on which it is supported. We describe how to select an excitation wavelength that does not generate photoluminescence, reduces the noise level, and yields a Raman spectrum with a superior signal-to-noise ratio. Furthermore, we discuss the phenomenon of resonance Raman spectroscopy and the effect that laser excitation wavelength has on the Raman spectrum.
Read more
here.
Read
other articles in this E-Book.
Combining SERS and Machine Learning to Advance Single-Cell Analysis
December 13th 2024Researchers from Stanford University have combined surface-enhanced Raman spectroscopy (SERS) with machine learning (ML) to enable rapid, precise single-cell analysis, offering potentially transformative applications in diagnostics and personalized medicine.
Applications and Theories of FTIR and UV-Vis Spectroscopy
December 12th 2024Light is utilized in a wide range of spectroscopic techniques and practices to gain a variety of information about materials and chemicals. These analyses can include material/chemical identification, quantitative analysis, quality control/quality assurance testing, and biological studies, among other applications. Applications, along with sample handling for both FTIR and UV-Vis spectroscopy, will be outlined in this paper.