Spectroscopy-04-01-2016

table1-web-3.jpg

Spectroscopy

The use of atomic spectroscopy techniques and sample preparation procedures is something that is not as routine in the pharmaceutical industry as are chromatography-based techniques and sample preparation procedures. With new requirements being implemented regarding elemental impurities by the United States Pharmacopoeia (USP) and International Conference on Harmonization (ICH), analysts in the pharmaceutical industry are, in many cases, working to determine how best to analyze their samples. Sample preparation techniques that can be used for pharmaceutical samples are the same ones that have been used by other industries for many years. This paper will provide a brief overview of potential techniques.

Spectroscopy

Near-infrared (NIR) spectroscopy offers quick analysis with no sample preparation for many fields, but it is particularly popular for process monitoring, materials science, and medical uses. NIR has also seen applications in agriculture from the very start of the technique, but new instrument capabilities are poised to offer even more to that field. Benoît Igne, a principal scientist at GlaxoSmithKline in King of Prussia, Pennsylvania, recently spoke to us about his work using NIR and areas where he thinks the technique has growth potential, specifically process analytical technology and agriculture.

Spectroscopy

Quantum cascade lasers have been gaining increasing attention as their capabilities are being demonstrated in a range of applications. One recent advance is the development of a miniaturized QCL, which when used as a light source, enables mid-infrared (mid-IR) scanning speeds much faster than those of conventional Fourier-transform IR (FT-IR). Ralf Ostendorf of the Fraunhofer Institute for Applied Solid State Physics in Freiburg, Germany, recently spoke to Spectroscopy about this work.

Spectroscopy

Vincent Motto-Ros of Lyon 1 University, in Lyon, France, is combining the ability of atomic spectroscopy techniques to detect and quantify metals with the mapping approaches most often used with molecular techniques. He has combined laser-induced breakdown spectroscopy (LIBS) with electron microscopy to map the metals and metallic nanoparticles in biological tissue, as a way of studying the update and clearance of these materials by biological systems. In this interview, he discusses his work applying LIBS to biological analysis, including the methods, advantages, and future directions.

fig03-web.jpg

Spectroscopy

The characterization of the active pharmaceutical ingredient (API) and its distribution and physical properties in commercial medicine is necessary in drug research and development process in the pharmaceutical industry. Among various analytical techniques employed for this purpose, Raman spectroscopy is gaining more popularity due to its advantages as non-destructive, non-invasive, fast spectrum acquisition in seconds, high reproducibility, and so on.