Jerome Workman, Jr. is an Executive Editor for Spectroscopy. Direct correspondence about this article to jworkman@mjhlifesciences.com
Revealing the Depths: Comparing SORS and Micro-SORS for Subsurface Material Analysis
August 15th 2024A recent study explores the strengths and limitations of spatially offset Raman spectroscopy (SORS) and micro-SORS, offering new insights into their applications for non-invasive subsurface material analysis. The findings provide valuable guidelines for choosing between these techniques based on sample characteristics and analytical needs.
2D-COS Raman Technique Reveals Biocompatibility of Carbon Nanofibers
August 14th 2024An innovative study has demonstrated that two-dimensional correlation spectroscopy (2D-COS) can effectively differentiate between toxic and biocompatible carbon nanofibers (CNFs), offering a novel method for evaluating the safety of nanomaterials intended for medical use.
A Review of the Latest Spectroscopic Research in Food and Beverage Analysis
August 7th 2024Spectroscopic analytical techniques are crucial for the analysis of processed foods and beverages. This review article emphasizes the latest advancements in several key spectroscopic methods, including atomic, vibrational, molecular, electronic, and X-ray techniques. The applications of these analytical methods in detecting quality, contaminants, and adulteration applications are thoroughly discussed.
Breaking Boundaries in 3D Biology: The Power of Highly-Multiplexed Raman Imaging
July 30th 2024Recent advancements in highly-multiplexed Raman imaging are set to revolutionize 3D spatial biology, offering unprecedented insights into complex biological systems. This new technology, highlighted in the Royal Society of Chemistry journal Chemical Communications, was reported by researchers from Shanghai Medical College, shows promise for enhancing our understanding of physiological functions and disease progression.
Breakthroughs in Brain Research: Surface-Enhanced Raman Spectroscopy Paves the Way
July 29th 2024Surface-enhanced Raman spectroscopy (SERS) is emerging as a powerful tool in brain research, offering enhanced sensitivity and stability over traditional methods. This technique promises to revolutionize the diagnosis and understanding of brain disorders, such as Alzheimer's and Parkinson's diseases, by providing rapid, reliable, and non-invasive diagnostic capabilities.
Glucose's Impact on Brain Cancer Cells Unveiled Through Raman Imaging
July 25th 2024Researchers have used Raman spectroscopy and chemometric methods to reveal how glucose affects normal and cancerous brain cell metabolism. Their findings highlight specific biomarkers that can distinguish metabolic changes, potentially aiding in cancer research and treatment.
Portable Near-Infrared Detection of Melamine in Sports Supplements: A Breakthrough in Rapid Testing
July 17th 2024Researchers have developed rapid quantification models to detect melamine adulteration in sports nutrition supplements using benchtop and portable near-infrared (NIR) spectroscopy instruments. This study highlights the efficiency of these methods in ensuring the safety and quality of sports supplements.
Advanced IR Spectroscopy Techniques Revolutionize Micro- and Nanoplastics Research
July 16th 2024A recent review highlights the application of cutting-edge infrared (IR) spectroscopic techniques in analyzing micro- and nanoplastics (MNPs), providing valuable guidance for researchers to select suitable instrumentation for analysis. The study emphasizes the need for reliable tools to understand the environmental and health risks associated with these pollutants.
Revolutionizing Analytical Chemistry: The AI Breakthrough
July 10th 2024Artificial intelligence (AI) is reshaping analytical chemistry by enhancing data analysis and optimizing experimental methods. This study explores AI's advancements, challenges, and future directions in the field, emphasizing its transformative potential and the need for ethical considerations.
Raman Spectroscopy Transforms Cultural Heritage and Forensic Analysis
July 9th 2024A recent special issue in the Journal of Raman Spectroscopy explores advancements in Raman spectroscopy techniques, emphasizing mobile setups, data treatment, and novel applications in cultural heritage and forensic contexts. This collection of papers highlights the state-of-the-art approaches and the promising new perspectives they offer.
Asteroids as Near-Earth Objects: A Detailed Near-Infrared Look into Composition and Origins
July 2nd 2024A comprehensive study of small near-Earth objects (NEOs) using spectroscopy reveals composition, source regions, and rotational properties. The research identifies S-complex asteroids as the most abundant and introduces a new subclass within this complex, yielding detailed information on the characteristics and origins of these celestial bodies.
Ellis Ridgeway Lippincott: A Legacy of Scientific Innovation
July 1st 2024Ellis R. Lippincott is one of the most influential spectroscopists of the past 100 years. He has been a notable research figure in molecular spectra and structure studies using infrared and Raman spectroscopy; in the study of potential energy functions, including hydrogen bonding; and in the invention and study of high pressure spectroscopic studies using the high-pressure diamond anvil cell. He also has applied spectroscopic techniques and analysis to the study of planetary atmospheres, to biochemistry, and to chemical lasers.
LEGO Bricks: A New Standard for Evaluating Fluorescence in Raman Spectroscopy
July 1st 2024Researchers have proposed an innovative approach to tackling fluorescence interference in Raman spectroscopy by using LEGO blocks as standard samples. This new method offers a low-cost, rugged, and reproducible alternative to the complex liquid mixtures traditionally used in such studies, marking a significant advancement in the field of spectroscopic analysis.
Light and AI Unite: Raman Breakthrough in Noninvasive Lung Cancer Detection
June 26th 2024Harun Hano, Charles H. Lawrie, and Beatriz Suarez, et al. from the Department of Physics at the University of the Basque Country (UPV/EHU), in Spain; and the IKERBASQUE─Basque Foundation for Science in Spain have published a research paper in the journal ACS Omega describing the use of Raman spectroscopy with specialized data treatment for the diagnosis of lung cancer.
Cutting-Edge vis-NIR Hyperspectral Imaging Enhances Bloodstain Identification in Forensic Science
June 25th 2024Forensic scientists have made significant strides in bloodstain identification, leveraging advanced hyperspectral imaging and machine learning to distinguish between human and animal bloodstains with remarkable accuracy.
Affordable Near-Infrared Open-Source Wearable Brain-Monitoring Device Revolutionizes Neuroscience
Published: June 20th 2024 | Updated: June 21st 2024Researchers from Vanderbilt University and Stanford University School of Medicine have developed a low-cost, wearable functional near-infrared spectroscopy (fNIRS) headband. This device, described as the first open-source, wireless fNIRS headband system, enables neuroimaging in naturalistic settings, making brain monitoring more accessible and versatile.
A Brief Review of the Latest Spectroscopic Research in Environmental Analysis
June 18th 2024Spectroscopic analytical techniques are crucial for the analysis of environmental samples. This review emphasizes the latest advancements in several key spectroscopic methods, including atomic, vibrational, molecular, electronic, and X-ray techniques. The applications of these analytical methods in detecting contaminants and other environmental applications are thoroughly discussed.
Cutting-Edge Near-infrared Wearable Neuroimaging Technologies Promise New Insights
June 18th 2024Advances in wearable, high-density functional near-infrared spectroscopy (fNIRS) and diffuse optical tomography (DOT) technologies are paving the way for real-world neuroscience applications, enabling high-resolution imaging of the human cortex in various environments. This new technology promises significant improvements in understanding brain function during naturalistic activities.
Flexible Near-Infrared Photodetectors Pave the Way for Advanced Wearable Technology
June 12th 2024A team of researchers from RIKEN and The University of Tokyo have developed flexible near-infrared organic photodetectors (OPDs) with significant implications for wearable technology. These devices promise enhanced non-invasive biosensing and bio-imaging capabilities, paving the way for more responsive and intelligent wearable applications.
Wearable Near-Infrared Technology Tested for Monitoring Athletic Performance
June 10th 2024Researchers from the University of Saarland in Germany investigated the reliability and side differences in muscle oxygen saturation (SmO2) measurements using a wearable near-infrared monitor on trained cyclists. The study found that the device shows good reliability but highlighted significant side differences, which must be considered in practical applications.
Unveiling the Giants: Mid-Infrared Observations of the Solar System's Largest Planets
June 5th 2024A century of mid-infrared observations has significantly advanced our understanding of the atmospheres of the giant planets in our solar system. A researcher from the University of Leicester in the United Kingdom and Universidad Adolfo Ibáñez in Chile has reviewed the developments in this field and the potential of the James Webb Space Telescope (JWST) to further enhance our knowledge of these planets.
Barbie Dolls Under the Microscope and FT-IR ATR: Unveiling the Secrets of Iconic Toy Degradation
June 3rd 2024Researchers have delved into the material composition and degradation phenomena of Barbie dolls produced between 1959 and 1976, uncovering insights into their chemical degradation and preservation challenges.
Innovative New Method Speeds Up Correction of ATR Infrared Spectra
May 20th 2024Researchers at the Leibniz Institute of Photonic Technology have developed a rapid method to correct infrared attenuated total reflection (ATR) infrared spectra, essential for accurate analysis in various scientific fields. By bypassing iterative processes, this approach enhances efficiency and precision.