Jerome Workman, Jr.

Jerome Workman, Jr. is an Executive Editor for Spectroscopy. Direct correspondence about this article to jworkman@mjhlifesciences.com

Articles by Jerome Workman, Jr.

High contrast image of a crime scene | Image Credit: © fergregory - stock.adobe.com

Researchers have developed a cutting-edge, portable LIBS sensor designed for crime scene investigations, offering both handheld and tabletop modes. This device enables on-the-spot analysis of forensic samples with unprecedented sensitivity and depth, potentially transforming forensic science.

Yellow law enforcement tape isolating crime scene. Blurred view of city street, toned in red and blue police car lights | Image Credit: © New Africa - stock.adobe.com

A recent study explores the effectiveness of near-infrared (NIR) and ultraviolet-visible (UV-vis) spectroscopy in determining the time since deposition (TSD) of bloodstains, a critical aspect of forensic investigations. By comparing these two methods, researchers aim to improve the accuracy and reliability of bloodstain dating, with potential implications for real-world forensic applications.

Functional near-infrared spectroscopy (fNIRS) has emerged as a vital tool in brain imaging over the past decade, offering noninvasive, real-time insights into brain function. A recent review study presents a comprehensive bibliometric analysis, revealing the global trends, research hotspots, and future potential of fNIRS in clinical applications, particularly in neurology, psychiatry, pediatric medicine, and sports science.

Using NIR and UV-Vis Spectroscopy in Bloodstain Dating ©  Yeti Studio - stock.adobe.com

A recent study explores the effectiveness of Near-infrared (NIR) and ultraviolet-visible (UV-vis) spectroscopy in determining the time since deposition (TSD) of bloodstains, a critical aspect of forensic investigations. By comparing these two methods, researchers aim to improve the accuracy and reliability of bloodstain dating, with potential implications for real-world forensic applications.

The Latest Spectroscopic Research in Agriculture Analysis ©  Dzikir - stock.adobe.com

Spectroscopic analytical techniques are crucial for the analysis of agricultural products. This review emphasizes the latest advancements in several key spectroscopic methods, including atomic, vibrational, molecular, electronic, and X-ray techniques. The applications of these analytical methods in detecting important quality parameters, adulteration, insects and rodent infestation, ripening, and other essential applications are discussed.

AI-Powered Spectroscopy in Rapid Food Analysis ©  Lila Patel - stock.adobe.com

A recent study reveals on the challenges and limitations of AI-driven spectroscopy methods for rapid food analysis. Despite the promise of these technologies, issues like small sample sizes, misuse of advanced modeling techniques, and validation problems hinder their effectiveness. The authors suggest guidelines for improving accuracy and reliability in both research and industrial settings.

Soil Property Prediction Using vis-NIR Spectral Data ©  Тихон Купревич - stock.adobe.com

Researchers from Zhejiang University have developed a new non-linear memory-based learning (N-MBL) model that enhances the prediction accuracy of soil properties using visible near-infrared (vis-NIR) spectroscopy. By comparing N-MBL with traditional machine learning and local modeling methods, the study reveals its superior performance, particularly in predicting soil organic matter and total nitrogen.

SARS-CoV-2, 3d rendering of spike protein (blue) ©  Naeblys - stock.adobe.com

Researchers at Budapest University of Technology and Economics have developed a novel method for real-time monitoring of the protein purification process using Raman and near-infrared (NIR) spectroscopy. Their study compares the effectiveness of these two spectroscopic techniques in tracking the removal of imidazole, a process-related impurity, during the purification of the SARS-CoV-2 spike protein's receptor-binding domain (RBD).

The Search for signs of extraterrestrial life in space ©  Aleksandra - stock.adobe.com

Researchers from Humboldt-Universität zu Berlin and the German Aerospace Center (DLR) have developed a cutting-edge fiber-dispersive Raman spectrometer (FDRS) capable of detecting low-density biological matter in space. By combining a single-photon detector with a dispersive optical fiber element, the team achieved a breakthrough in in-situ Raman spectroscopy, promising unprecedented sensitivity and reliability in the search for extraterrestrial rudimentary life.

Spectroscopic analytical techniques are crucial for the analysis of processed foods and beverages. This review article emphasizes the latest advancements in several key spectroscopic methods, including atomic, vibrational, molecular, electronic, and X-ray techniques. The applications of these analytical methods in detecting quality, contaminants, and adulteration applications are thoroughly discussed.

3D biological imaging of stem cells  © Prasanth - stock.adobe.com

Recent advancements in highly-multiplexed Raman imaging are set to revolutionize 3D spatial biology, offering unprecedented insights into complex biological systems. This new technology, highlighted in the Royal Society of Chemistry journal Chemical Communications, was reported by researchers from Shanghai Medical College, shows promise for enhancing our understanding of physiological functions and disease progression.

Using Raman for liquid brain biopsies © Leo - stock.adobe.com

Recent research highlights the potential of liquid biopsy combined with Raman spectroscopy (RS) in diagnosing brain disorders. These innovative techniques offer non-invasive, precise, and continuous monitoring capabilities, presenting a promising future for early detection and intervention in conditions such as neurodegenerative diseases (NDs) and traumatic brain injury (TBI).

AI in spectroscopy and separation sciences © Tierney - stock.adobe.com

Artificial intelligence (AI) is reshaping analytical chemistry by enhancing data analysis and optimizing experimental methods. This study explores AI's advancements, challenges, and future directions in the field, emphasizing its transformative potential and the need for ethical considerations.

Art gallery walls adorned with paintings, sculptures, and Art Sale banners © Lila Patel - stock.adobe.com

A recent special issue in the Journal of Raman Spectroscopy explores advancements in Raman spectroscopy techniques, emphasizing mobile setups, data treatment, and novel applications in cultural heritage and forensic contexts. This collection of papers highlights the state-of-the-art approaches and the promising new perspectives they offer.

A breathtaking digital illustration of a comet streaking across a starry sky © tashechka - stock.adobe.com

Researchers using the James Webb Space Telescope (JWST) have observed a water vapor coma around main-belt comet 238P/Read. The study, led by Michael S. P. Kelley and Henry H. Hsieh, provides insights into the comet's activity driven by water-ice sublimation and distinguishes it from other comets due to the absence of significant carbon dioxide gas.