Can morphologically directed Raman spectroscopy obtain more discriminatory information from forensic samples than current tools?
Can morphologically directed Raman spectroscopy obtain more discriminatory information from forensic samples than current tools?
Can morphologically directed Raman spectroscopy obtain more discriminatory information from forensic samples than current tools?
Knowledge of atmospheric ammonia concentrations is important, but ammonia is difficult to measure. We report here on the development of a low-cost ammonia measuring differential optical absorption spectroscopy (DOAS) instrument, based on a small sized and low priced spectrograph.
Tuesday, June 28, 2022 at 1pm EDT | 6pm BST | 7pm CEST Confocal Raman imaging microscopy is a powerful, versatile, and increasingly common analytical technique capable of quickly identifying the molecules in a sample and visualizing their physical distribution in three dimensions. The conference will give a comprehensive overview of current technologies and their latest applications.
This application note compares the sensitivity of a single-reflection to multiple-reflection ATR for the nitrile functional group infrared transition.
The measurement of trace elements is important across a wide variety of materials characterization problems. When measuring small glass fragments collected from crime and accident scenes, forensics experts analyze trace strontium (Sr) and zirconium (Zr) typically unintentionally incorporated into the glass during manufacturing as one point of identification or comparison.
The structural complexity of monoclonal antibodies (mAbs) challenges the capabilities of even the most advanced chromatography and mass spectrometry techniques. This study examines the use of micro-pillar array columns in combination with mass spectrometry for peptide mapping of both mAbs and antibody–drug conjugates (ADCs).
A novel “dilute-and-shoot” LC–MS/MS method is described for the analysis of “bath salts” sold as “legal” highs, including mitragynine and nine synthetic cathinones, in urine.
A novel “dilute-and-shoot” LC–MS/MS method is described for the analysis of “bath salts” sold as “legal” highs, including mitragynine and nine synthetic cathinones, in urine.
A novel “dilute-and-shoot” LC–MS/MS method is described for the analysis of “bath salts” sold as “legal” highs, including mitragynine and nine synthetic cathinones, in urine.
Novel ionization processes provide gas-phase ions of a wide variety of materials using MS. These simple and sensitive methods operate from solution or a solid matrix. Both manual and automated platforms are described that allow rapid switching between the ionization methods of MAI, SAI, vSAI, and conventional ESI.
Novel ionization processes provide gas-phase ions of a wide variety of materials using MS. These simple and sensitive methods operate from solution or a solid matrix. Both manual and automated platforms are described that allow rapid switching between the ionization methods of MAI, SAI, vSAI, and conventional ESI.
Novel ionization processes provide gas-phase ions of a wide variety of materials using MS. These simple and sensitive methods operate from solution or a solid matrix. Both manual and automated platforms are described that allow rapid switching between the ionization methods of MAI, SAI, vSAI, and conventional ESI.
Novel ionization processes provide gas-phase ions of a wide variety of materials using MS. These simple and sensitive methods operate from solution or a solid matrix. Both manual and automated platforms are described that allow rapid switching between the ionization methods of MAI, SAI, vSAI, and conventional ESI.
Novel ionization processes provide gas-phase ions of a wide variety of materials using MS. These simple and sensitive methods operate from solution or a solid matrix. Both manual and automated platforms are described that allow rapid switching between the ionization methods of MAI, SAI, vSAI, and conventional ESI.
Novel ionization processes provide gas-phase ions of a wide variety of materials using MS. These simple and sensitive methods operate from solution or a solid matrix. Both manual and automated platforms are described that allow rapid switching between the ionization methods of MAI, SAI, vSAI, and conventional ESI.
A fully automated process for online peak fractionation and reduction of therapeutic antibodies with subsequent QTOF-MS characterization is presented. The technique is based on state-of-the-art 2D-HPLC technology coupled with additional HPLC modules via a dedicated software macro.
A fully automated process for online peak fractionation and reduction of therapeutic antibodies with subsequent QTOF-MS characterization is presented. The technique is based on state-of-the-art 2D-HPLC technology coupled with additional HPLC modules via a dedicated software macro.
A fully automated process for online peak fractionation and reduction of therapeutic antibodies with subsequent QTOF-MS characterization is presented. The technique is based on state-of-the-art 2D-HPLC technology coupled with additional HPLC modules via a dedicated software macro.
A fully automated process for online peak fractionation and reduction of therapeutic antibodies with subsequent QTOF-MS characterization is presented. The technique is based on state-of-the-art 2D-HPLC technology coupled with additional HPLC modules via a dedicated software macro.
A fully automated process for online peak fractionation and reduction of therapeutic antibodies with subsequent QTOF-MS characterization is presented. The technique is based on state-of-the-art 2D-HPLC technology coupled with additional HPLC modules via a dedicated software macro.