Since glycans are responsible for bioactivity, solubility, immunogenicity, and clearance rate from circulation, it is vital to have a detailed map of glycans in therapeutic glycoproteins. Detailed glycoprotein structural analysis must be able to identify the peptide sequence where the glycans are attached as well as the structure of the glycan portion, including oligosaccharide sequence and glycosyl linkages. This article details methods for mass spectrometry experiments on both released glycans (“glycomics”), as well as on intact glycopeptides (“glycoproteomics”) using electron transfer dissociation, high-energy collision dissociation, and collisioninduced dissociation fragmentation pathways, which are needed to fully elucidate the structure of glycoproteins.
An evaluation of the ability of XRF spectrometry to perform elemental impurity analysis of 12 elements in various pharmaceutical materials
An evaluation of the ability of XRF spectrometry to perform elemental impurity analysis of 12 elements in various pharmaceutical materials
The Milestone UltraWAVE can digest up to 22 different sample types simultaneously. The high temperature and pressure capability enables a complete digestion of nearly all inorganic sample types that need to be analyzed for trace metals.
In this study, general extract screening of food storage materials was done with nontargeted analytical methods to understand what analytes could potentially leach into food or beverages. GC and mass spectral deconvolution effectively separated analytes within the complex mixture and TOF-MS provided full mass range spectral data for identification. This workflow can be used for confident characterization of components present as extractables from food packaging materials.
Interest in connecting ion mobility spectrometry (IMS) to GC and especially to LC is now growing. One favorable property of IMS is that it can work with ambient pressure and can be easily connected to a gas or liquid chromatograph. Analytical applications of GC–MS and LC–MS are very different and encompass investigations into food, medical science, environment, drugs of abuse, chemical warfare agents, and explosives.
Interest in connecting ion mobility spectrometry (IMS) to GC and especially to LC is now growing. One favorable property of IMS is that it can work with ambient pressure and can be easily connected to a gas or liquid chromatograph. Analytical applications of GC–MS and LC–MS are very different and encompass investigations into food, medical science, environment, drugs of abuse, chemical warfare agents, and explosives.
Utilizing Hamilton’s CO-RE® disposable tips with DPX technology provides a fast, accurate, and simple extraction method for analyzing drugs of abuse in urine. The Microlab NIMBUS equipped with a CO-RE 96-channel Multi-Probe Head (MPH) allows for high-throughput, automated sample processing.
Utilizing Hamilton’s CO-RE® disposable tips with DPX technology provides a fast, accurate, and simple extraction method for analyzing drugs of abuse in urine. The Microlab NIMBUS equipped with a CO-RE 96-channel Multi-Probe Head (MPH) allows for high-throughput, automated sample processing.
This application note will present the data collected as part of the demonstration of disk solid phase extraction validation for US EPA method 625.1.
Gain insights into improving efficiency and accuracy in elemental analysis through automated dilution technology. Learn about the key capabilities of the Agilent ADS 2 system and its seamless integration with ICP-MS and ICP-OES workflows.
Effectiveness of VC Ultra for automated cleaning of microwave digestion vessels following the digestion of a sample containing relatively high amounts of trace metals
In this article, we introduce the concept of a gas exchange device (GED) and how it can be used to monitor organometallic compounds and metallic particles in specialty gases.
Understanding gallstone formation requires examining their elemental composition. Here, EDS and LIBS were used with PLS-DA to quantify elements found in human gallstones.
Understanding gallstone formation requires examining their elemental composition. Here, EDS and LIBS were used with PLS-DA to quantify elements found in human gallstones.
The enhanced resolution of comprehensive two-dimensional gas chromatography (GCxGC) was combined with the increased resolving power, speed, and mass accuracy of the Pegasus® HRT's mass analyzer to confidently characterize molecules in light cycle oil (LCO) and vacuum gas oil (VGO). Optimized chromatographic and mass spectrometry parameters were implemented to improve data acquisition, processing, and heteroatomic speciation of these light to midlevel petroleum fractions. Software tools were utilized to process the data and facilitate robust compound identifications. GCxGC-HRT data was processed using comprehensive Peak Find and resulted in comprehensive characterization of molecules in LCO and VGO samples. Compound classes consisted of, but were not limited to alkanes, cycloalkanes, aromatics, benzothiophenes, and carbazoles. Selective processing of alkylbenzothiophenes and dibenzothiophenes was conducted by retrospectively processing data using rapid two-dimensional, accurate mass Target Analyte Finding (TAF).
Microplastics from clothing, abrasive action on plastics, or engineered microbeads as found in some exfoliating cosmetics are showing up in many environmental systems. FT-IR microscopy is a useful tool in the analysis of microplastics, providing visual information, particle counts, and particle identification.