Application Notebook
Cement is one of the most important materials in the construction industry. Traditionally, WDXRF spectrometers used in cement plants have been large, floor-standing models with substantial installation requirements and ownership expenses. This application note demonstrates the capabilities of the Rigaku Supermini - a new low-cost, benchtop wavelength dispersive X-ray fluorescence (WDXRF) spectrometer - for the rapid quantitative elemental analysis of cement raw meal.
Cement is one of the most important materials in the construction industry. Traditionally, WDXRF spectrometers used in cement plants have been large, floor-standing models with substantial installation requirements and ownership expenses. This application note demonstrates the capabilities of the Rigaku Supermini — a new low-cost, benchtop wavelength dispersive X-ray fluorescence (WDXRF) spectrometer — for the rapid quantitative elemental analysis of cement raw meal.
Cement is one of the most important materials in the construction industry. Since its physical properties and those of the concrete ultimately made from it depend on its composition, it is important to monitor the composition of the raw meal used to make the clinker.
Traditionally, WDXRF spectrometers used in cement plants have been large, floor-standing models with substantial installation requirements and ownership expenses. As the industry strives for greater efficiency, operators have increasingly sought equipment that is less expensive to acquire and less costly to maintain. This note demonstrates the capabilities of a low-cost, benchtop WDXRF spectrometer for rapid quantitative elemental analysis of cement raw meal.
The pressed-pellet method for powder samples is the most common sample preparation technique in XRF because it does not require an expensive flux, fusion machine, or highly trained operators. For this report, raw meal powders were pulverized and pressed into aluminum rings at 120 kN. Measurements were performed in vacuum, with the X-ray tube operating at full power (50 kV and 4.0 mA) and using the standard crystals: LiF(200), PET, and RX25. The total analysis time for all peak and back-ground lines was about 4 min per sample.
Figure 1: Rigaku Supermini wavelength dispersive X-ray fluorescence (WDXRF).
A series of reference materials of cement raw meal certified by the China State Bureau of Technical Supervision (CSBTS) were used to calibrate the instrument. The calibration results are presented in Table I. One of the reference materials, used in calibration, was measured consecutively 10 times to determine the short-term stability of the method and instrument. These test results are presented in Table II and show that it is possible to analyze pressed pellets of cement raw meal with high repeatability on a 200W WDXRF instrument that is small enough to fit on a bench.
Table II: Repeatability test results (units of wt %)
The Supermini is a sequential WDXRF spectrometer designed specifically to deliver high performance while eliminating typical installation requirements, such as cooling water, special power supply, large floor space, and so on. Featuring a unique air-cooled 200W X-ray tube, two detectors, programmable environment of vacuum or helium, and three analyzing crystals, the Supermini can analyze all relevant elements in just minutes with full spectral separation of all peaks, high sensitivity for light elements and exceptional repeatability. This report demonstrates that cement raw meal samples can be routinely analyzed as pressed powders with excellent accuracy and precision on the Rigaku Supermini low-cost benchtop sequential WDXRF spectrometer.
Figure 2: Rigaku Supermini wavelength dispersive X-ray fluorescence (WDXRF) sample holders.
Rigaku Americas Corp.
9009 New Trails Drive, The Woodlands, TX 77381
tel. (281) 362-2300; Fax: (281) 364-3628
Contact: info@rigaku.com; Website: www.rigaku.com
Get essential updates on the latest spectroscopy technologies, regulatory standards, and best practices—subscribe today to Spectroscopy.
Specificity and the Net Analyte Signal in Full-Spectrum Analysis
July 21st 2025This tutorial addresses the critical issue of analyte specificity in multivariate spectroscopy using the concept of Net Analyte Signal (NAS). NAS allows chemometricians to isolate the portion of the signal that is unique to the analyte of interest, thereby enhancing model interpretability and robustness in the presence of interfering species. While this tutorial introduces the foundational concepts for beginners, it also includes selected advanced topics to bridge toward expert-level applications and future research. The tutorial covers the mathematical foundation of NAS, its application in regression models like partial least squares (PLS), and emerging methods to optimize specificity and variable selection. Applications in pharmaceuticals, clinical diagnostics, and industrial process control are also discussed.
New Study Expands Nickel Autoionization Spectra to Advance Laser Isotope Separation Technologies
July 17th 2025Researchers at China’s National Key Laboratory have identified 170 nickel autoionization states using resonance ionization mass spectrometry, significantly advancing the spectral database critical for laser isotope separation and atomic spectroscopy.
AI-Powered Fusion Model Improves Detection of Microplastics in the Atmosphere
July 17th 2025Researchers from Nanjing University of Information Science & Technology have introduced a breakthrough AI-enhanced multimodal strategy for real-time detection of polyamide microplastics contaminated with heavy metals.
How Analytical Chemists Are Navigating DOGE-Driven Funding Cuts
July 14th 2025DOGE-related federal funding cuts have sharply reduced salaries, lab budgets, and graduate support in academia. Researchers view the politically driven shifts in priorities as part of recurring systemic issues in U.S. science funding during administrative transitions. The impact on Federal laboratories has varied, with some seeing immediate effects and others experiencing more gradual effects. In general, there is rising uncertainty over future appropriations. Sustainable recovery may require structural reforms, leaner administration, and stronger industry-academia collaboration. New commentary underscores similar challenges, noting scaled-back graduate admissions, spending freezes, and a pervasive sense of overwhelming stress among faculty, students, and staff. This article addresses these issues for the analytical chemistry community.