Lasers and Laser-Source Technologies

Latest News


For an emergent analytical technique to be adopted, its proponents must find applications where it offers significant benefits over established techniques, such as sensitivity, speed, cost, or ease of use, or some combination of those. For laser-induced breakdown spectroscopy (LIBS), identifying its ideal niche has been one of the challenges in gaining followers. To assess where LIBS is being used today, what new areas are emerging, and how well LIBS competes with other methods in those new areas, we asked a panel of experts for their views.

In honor of Spectroscopy’s celebration of 30 years covering the latest developments in materials analysis, we asked experts to assess the current state of the art of six key spectroscopic techniques. Here, the experts weigh in on the key challenges in laser-induced breakdown spectroscopy (LIBS), and how these problems might be solved.

Spectroscopy_10_i1.gif

In honor of Spectroscopy's celebration of 30 years covering the latest developments in materials analysis, we asked a panel of experts to assess the current state of the art of laser-induced breakdown spectroscopy (LIBS), and to try to predict how technology will develop in the future.

RWiens-853065-1416902144973.jpg

NASA's Curiosity rover landed inside the 3.7-billion-year-old Gale Crater on Mars on August 6, 2012, and it has been obtaining data about the planet?s rocks and soils with its ChemCam instrument ever since. We recently spoke with Roger Wiens of the Los Alamos National Laboratory, the Principal Investigator of the ChemCam instrument, about the instrument's laser-induced breakdown spectroscopy (LIBS) capabilities.

Everyone loves a list, and the editors of Spectroscopy are no exception! In 2013, Spectroscopy covered a wide array of topics throughout the year to bring you the most relevant information for your work, on topics ranging from selecting the right ICP-MS system to deciding which Raman technique is right for you, from our annual salary survey to calibration transfer. Here is a list of 13 popular articles and columns from 2013

Laser-induced breakdown spectroscopy (LIBS) can be used to determine the elemental composition of any sample, whether it's a solid, a liquid, or a gas. Steven Rehse of the University of Windsor (Windsor, Ontario, Canada) focuses on various applications of LIBS, including medical analyses. In this interview, Rehse discusses the use of LIBS for analyzing biomedical specimens such as tissues and bacteria, the limitations of the technique for biomedical applications, and possible future research with LIBS.

Spectroscopy recently spoke with Dr. Dominic Hare, a senior research officer at the Florey Institute of Neuroscience and Mental Health in Australia, about his work using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to study metals in the brain. His research highlights the role that iron plays in Parkinson's disease in the hopes to better understand the causes of the disease and eventually find an appropriate treatment.

RKM-FLASH_thumbnail-813292-1408538651033.jpg

Rick Russo, the winner of the 2013 Lester W. Strock Award, is known for important advances in laser ablation for use in spectrochemical analysis. In a new interview, he talks about those developments, how his career developed, and what it's like, as a research scientist, to lead a start-up company.

Data from NASA's high-resolution ICESat lasers indicate that ice sheets in Greenland and western Antarctica are melting faster than scientists thought.

The United States Army Research Laboratory (ARL) has been applying standoff laser-induced breakdown spectroscopy (LIBS) to hazardous material detection and determination. We describe several standoff systems that have been developed by ARL and provide a brief overview of standoff LIBS progress at ARL. We also present some current standoff LIBS results from explosive residues on organic substrates and biomaterials from different growth media. These new preliminary results demonstrate that standoff LIBS has the potential to discriminate hazardous materials in more complex backgrounds.

tech_forum_main_main_main_main_main-558772-1408658504992.jpg

This month's Technology Forum looks at the topic of optics and lasers and the trends and issues surrounding it. Joining us for this discussion are Rob Morris, Director of Marketing, Ocean Optics, Inc.; and Phil Taday, Applications Group Leader, fromTeraView Limited.

i1-557891-1408659535675.jpg

Ellipsometry is the analysis of the change in the state of polarized light after it has reflected from the surface of a thin film sample. Laser ellipsometry, which has certain advantages and disadvantages, is a subset of this market. Applications for laser ellipsometry prinarily are related to the semiconductor and electronics industry, but its use in the life sciences could offer significant new demand.

This month's Technology Forum looks at the topic of optics and lasers and the trends and issues surrounding them. Joining us for this discussion are Rob Morris, with Ocean Optics, Sergey Mirov, with University of Alabama at Birmingham, Dan Merdes, with Penn State University, and Tim Kane, with Penn State University.