Jerome Workman Jr.

Jerome Workman Jr.

Jerome Workman Jr. serves on the Editorial Advisory Board of Spectroscopy and is currently with Unity Scientific LLC. He is also an adjunct professor at Liberty University and U.S. National University. He can be reached at jworkman04@gsb.columbia.edu.

Articles by Jerome Workman Jr.

Depiction of Protein Molecules and Molecular Structures in Dynamic Biological Interactions ©  克 杜 - stock.adobe.com

Researchers at Nagoya University and RIKEN have developed a novel computational method to enhance the resolution of high-speed atomic force microscopy (HS-AFM) images for studying protein conformational transitions. The algorithm, normal mode flexible fitting-atomic force microscopy (NMFF-AFM), leverages normal-mode analysis to derive precise molecular models, potentially transforming the understanding of biomolecular dynamics.

Denise M. Mitrano is an Assistant Professor of Environmental Chemistry of Anthropogenic Materials at ETH Zurich in the Department of Environmental Systems Science. Her research is directed to understanding the impact and interaction of nanoparticles in the environment using atomic spectroscopy techniques, such as inductively coupled plasma–mass spectrometry (ICP-MS) and single-particle ICP-MS (sp-ICP-MS). She is the winner of the 2022 Emerging Leader in Atomic Spectroscopy Award. Chosen by an independent committee, the Emerging Leader in Atomic Spectroscopy Award recognizes the achievements and aspirations of a talented young atomic spectroscopist who has made strides early in his or her career toward the advancement of atomic spectroscopy techniques and applications. We recently interviewed Mitrano about her work.

As forensic analysis continues to advance, such as in the understanding of source identification and analysis of trace quantities of bodily fluids, spectroscopic techniques and machine learning are playing a significant role. Igor K. Lednev, a chemistry professor at the University at Albany, SUNY, in Albany, New York, has been working in this field with his team. The analytical methods currently under investigation include Raman spectroscopy, attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy, and advanced chemometric classification and analysis methods. We recently interviewed him about his work.

Bhavya Sharma is the winner of the 2021 Emerging Leader in Molecular Spectroscopy Award. We recently interviewed her about her work conducting research to detect active and important biomolecules related to hormone regulation, neurological health, and disease diagnosis.

Working at the frontiers of biotechnology, fiberoptics, lasers technique, and molecular spectroscopy, Tuan Vo-Dinh of Duke University has developed multiple sensor technologies for medical research and diagnostics. Throughout this work, Vo-Dinh and his research colleagues have brought spectroscopy to biomedical applications. In this second recent interview, Vo-Dinh talks about his research work and philosophy.

L. Robert Baker is an associate professor at The Ohio State University in the Department of Chemistry & Biochemistry. His research focuses on X-ray spectroscopy, nonlinear and time-resolved spectroscopy, the chemistry of surfaces and interface science, and energy conversion and catalysis—work that may lead to better solar energy conversion materials. He is the winner of the 2021 Emerging Leader in Atomic Spectroscopy Award, which is presented by Spectroscopy magazine. This annual award, begun in 2017, recognizes the achievements and aspirations of a talented young atomic spectroscopist, selected by an independent scientific committee.

Dmitry Kurouski of the Department of Biochemistry and Biophysics at Texas A&M University in College Station, Texas, is applying Raman spectroscopy to important applications in agriculture for identification and classification of various plant species, for quantification of essential plant constituents, for disease diagnosis in plants, and for Raman-based digital and precision farming. He and his colleagues are at the forefront of using the advantages of Raman based measurements for non-invasive and non-destructive analyses for important field and remote measurement applications.

This guide includes many terms related to infrared instrumentation, sampling, measurement techniques, basic nomenclature and concepts, data processing, and applications of infrared instrumentation. In addition, this guide includes some data processing terms, a few statistical data analysis terms, and the essential chemometric terms for typical data preprocessing and calibration.

Latest Updated Articles