Infrared (IR) Spectroscopy

Latest News


i4-792126-1408595345307.jpg

Fourier transform infrared (FT-IR) spectroscopic imaging is a highly versatile technique that can be applied to a wide range of systems. This article summarizes some of the recent efforts developing applications of FT-IR imaging for microfluidics. The main advantage of FT-IR imaging compared to traditional imaging methods is that it is a label-free imaging technique.

i4-792126-1408595345307.jpg

Fourier transform infrared (FT-IR) spectroscopic imaging is a highly versatile technique that can be applied to a wide range of systems. This article summarizes some of the recent efforts developing applications of FT-IR imaging for microfluidics. The main advantage of FT-IR imaging compared to traditional imaging methods is that it is a label-free imaging technique.

FT-IR Technology Forum

The well-established technique of Fourier transform infrared (FT-IR) spectroscopy offers analytical capabilities for diverse applications, and chemometrics and spectral interpretation software are important elements of the technique.

i4-787073-1417781321804.jpg

The beginning of the age of Fourier transform infrared (FT-IR) spectroscopy meant the availability of digital spectra and opened the possibility of using computers to compare a single spectrum against a reference database containing thousands of spectra, thereby allowing enormous efficiency gains in the comparison of unknown spectra to reference materials. Various algorithms can be used to create a hit quality index (HQI), which is a measure of how well the query spectrum compares against each reference spectrum.

i8_t-787072-1408599121695.jpg

Infrared reflection spectroscopy is a tool that can be used to study coated plastics, but the spectra can show unexpected features. In this report, we calculate the specular reflectance for a flat surface of two different polymers as well as how their spectra change when the other polymer is added as a film with a thickness of up to 2.5 ?m. One of the unusual phenomena we observe is that "derivative"-shaped substrate bands invert in sign as the other polymer is added as a coating. We also show how the reflection of the surface changes and becomes polarized as the angle of incidence increases.

i4-787071-1408599125157.jpg

Self-assembled monolayers (SAMs) can be applied in a variety of technical areas. Infrared characterization of these materials is a challenge because of the low concentrations on the surfaces. This article reviews the sampling methods for characterization and presents data comparing the different approaches.

i4-787070-1416911614507.jpg

The micro attenuated total reflectance (ATR) chemical imaging of polymers, in particular polymer laminates, typically requires significant pressure to ensure good sample-to-ATR crystal contact. For thin cross-sectioned materials, ensuring structural rigidity against this pressure requires significant sample preparation, such as resin embedding, cutting, and polishing.

How can you navigate the maze of choices for detecting molecular vibrations with mid-infrared (IR), near IR (NIR), and visible (Raman)? Understanding what is being measured, how it is measured, and the advantages and disadvantages of each technique, will help.

i4-735157-1416910907810.jpg

When combined with the rapid scan speeds of modern instruments, Fourier-transform infrared (FT-IR) spectroscopy provides a powerful real-time method for monitoring chemical changes (for example, the optical adhesive caused by illumination of a UV lamp). This article describes the characterization of several adhesives used in an optical assembly. Several different approaches to measuring the rate of change during the curing experiment are described. As the number of uses for UV curing and photopolymerization increases, real-time FT-IR should play a major role in characterizing these new materials and products.