Spectroscopy Interviews

Latest News


UV resonance Raman spectroscopy examines how UV light interacts with the electrons of samples and provides information about their molecular structure and dynamics. Sanford A. Asher, Distinguished Professor of Chemistry at the University of Pittsburgh, is using the technique to study peptide excited states and conformations and protein folding, with the ultimate goal of helping to advance research into the mechanisms of disease. He recently spoke to us about this work.

Simpson, Garth 2.jpg

Roughly half of all promising new drug candidates are abandoned because of poor aqueous solubility. As a result, many pharmaceutical researchers are pursuing amorphous formulations, which can show improved solubility. Those researchers need powerful analytical tools to study the trace crystalline structures in those drugs, however. To address this problem, Garth Simpson of Purdue University has developed a powder X-ray diffraction (XRD) method with 100 ppm detection limits. He recently spoke to us about this work, for which he won the 2014 FACSS Innovation Award.

chan-gc.jpg

Inductively coupled plasma (ICP) systems have an optimal observation height, but measurements made at other observation heights in the ICP should also yield the same accurate analytical results - if there are no interferences.  This means that a spatial-varying determined concentration of the analyte can reveal that something - such as matrix interference - is wrong with the measurement. George Chan of the Laser Technologies Group at Lawrence Berkeley National Laboratory recently spoke to us about his work exploiting the spatial heterogeneity of the ICP.

Catherine-informal-portrait.jpg

Classic proteomic workflows analyze tryptic peptides, which generally weigh less than 3000 Da, using a “bottom up” approach. The importance of multiple and coordinated post-translational modifications compels the analysis of longer peptides (using “middle out” analysis) and intact proteins (using “top down” analysis). Prof. Catherine Fenselau of the Department of Chemistry and Biochemistry at the University of Maryland is a leading researcher in this field, and has won numerous awards for her work, the most recent of which is the 2014 Eastern Analytical Symposium Award for Outstanding Achievements in Mass Spectrometry. She recently spoke to us about her research with mass spectrometry–based analyses of proteins associated with cells known to be an obstacle to anti-cancer immunotherapies.

Infrared spectroscopic imaging has been advancing significantly in recent years. Key to that advance is improving the understanding of the underlying mechanisms that influence the ability to achieve greater resolution and speed. Rohit Bhargava, a professor in the Department of Bioengeering and at the Beckman Institute at the University of Illinois, Urbana-Champaign, has been elucidating those mechanisms, and won the 2014 Applied Spectroscopy William F. Meggers Award for his paper on this topic. He recently spoke to Spectroscopy about this work.

Analyzing Art with Lasers

Lasers have many different scientific uses. Some analytical scientists are advancing the use of laser-based techniques to analyze works of art and other ancient artifacts. Laser-ablation surface-enhanced Raman microspectroscopy (LA-SERS) can analyze art and artifacts to accurately identify the various components inside them. Spectroscopy recently spoke with Pablo Londero, an Associate Conservation Scientist at the Institute for the Preservation of Cultural Heritage (IPCH) at Yale University, and Marco Leona, the head of scientific research at the Metropolitan Museum of Art, about their work in this area.

Fourier transform infrared (FT-IR) spectroscopy has been used to identify unknown materials, determine the quality or consistency of a sample, and determine the amount of components in a mixture. Gary Small, of the Department of Chemistry and Optical Science and Technology Center at the University of Iowa, spoke to Spectroscopy about his work using passive FT-IR remote sensing measurements.