September 27th 2024
In a preview to the upcoming SciX Conference October 20 to 25 in Raleigh, North Carolina, Spectroscopy sat down with Nick Stone of the University of Exeter to discuss his recent work in oncology and clinical analysis.
Solving Polymer Problems Using IR Spectroscopy
July 12th 2017Naoto Nagai, of the Industrial Research Institute of Niigata Prefecture in Japan, has been studying the potential of IR spectroscopy for investigating higher-order structures of polymers. He and his colleagues recently looked at the IR spectra of polyoxymethylene (POM) mold plates and the cause of occasional resin cracks.
Quantitative Drug Metabolite Profiling without Radiolabels Using HPLC–ICP-MS
June 6th 2017In drug development, quantitative determination of a candidate drug and its metabolites in biofluids is an important step. The standard technique for quantitative metabolite profiling is radiolabeling followed by high performance liquid chromatography (HPLC) with radiodetection, but there are disadvantages to this approach, including cost and time, as well as safety and ethical concerns related to administering radiolabeled compounds to humans.
Detecting Pathogenic Mycoplasmas with Surface-Enhanced Raman Spectroscopy
May 30th 2017Surface-enhanced Raman spectroscopy (SERS) with silver nanorod-array substrates has been used in various biological applications, such as detection of proteins in body fluids. Duncan C. Krause, who is a professor in the Department of Microbiology at the University of Georgia, worked with his group to establish a SERS method with those substrates for detecting the pathenogenic mycoplasma that causes bronchitis and pneumonia. We recently spoke with him about this research.
New Developments in 2D IR Advance Medical Research and Materials Analysis
May 10th 2017Coherent two-dimensional infrared spectroscopy (2D IR) uses a series of IR femtosecond laser pulses to pump and then probe the response of a system, making it possible to learn much more about the structure and dynamics of molecules than can be seen with one-dimensional IR spectroscopy. The technique’s inventor, Martin T. Zanni of the University of Wisconsin-Madison, discussed 2D IR in a 2013 interview in Spectroscopy (1). Since 2013, Zanni has applied 2D IR spectroscopy to new systems and has started a company, PhaseTech Spectroscopy, Inc., to commercialize the technique.
A New Mass Spectrometry Method for Protein Analysis
March 22nd 2017Proteomics and structural biology require specialized mass spectrometry methods for characterizing protein structures and conformations. Jennifer S. Brodbelt, a professor of chemistry at the University of Texas at Austin, focuses on the development and application of photodissociation mass spectrometry for studying biological molecules such as peptides, proteins, nucleic acids, oligosaccharides, and lipids. She recently spoke with Spectroscopy about her work with this technique. She is the winner of the 2017 ANACHEM Award, which will be presented at the SciX meeting in October 2017. The award is presented annually to an outstanding analytical chemist based on activities in teaching, research, administration, or other activities that have advanced the art and science of the field.
The Ins and Outs of On-line Process Control with Raman and FT-IR Spectroscopy
March 16th 2017Using Raman and FT-IR spectroscopy for on-line monitoring of manufacturing processes offers advantages such as improved quality control, nondestructive analysis, and reduced costs. Jim Rydzak has more than 20 years of experience leading teams in applying on-line process control, in both the pharmaceutical and consumer goods industries. He recently talked to Spectroscopy about that work, including what they achieved and how they overcame challenges.
Measuring Isotopic Compositions with Multiple-Collector ICP-MS: The Only Limit Is the Imagination
March 3rd 2017Multiple-collector inductively coupled plasma–mass spectrometry (MC-ICP-MS) is a powerful technique for measuring isotopic ratios in various areas of research. Michael Wieser, who is an associate professor in the Department of Physics and Astronomy at the University of Calgary, uses MC-ICP-MS to measure isotopic compositions at trace levels in applications ranging from geological studies to protein research. He recently spoke to Spectroscopy about this work.
Nanoparticles, SERS, and Biomedical Research
February 14th 2017In biomedical applications of surface-enhanced Raman spectroscopy (SERS), nanoparticles can enhance the Raman signal and provide additional functionality. Duncan Graham of the University of Strathclyde has been pushing the limits of what can be achieved using functionalized nanoparticles and SERS, in applications such as cholera detection, lipid profiling in cancer cells, and assessing the efficacy of anti-cancer drugs, For this and other work he has won the 2017 Charles Mann Award, presented by the Federation of Analytical Chemistry and Spectroscopy Societies (FACSS). He recently spoke to Spectroscopy about this work. This interview is part of a series of interviews with the winners of awards that will be presented at the SciX 2017 conference in October.
Optical Coherence Tomography for Esophageal Imaging
January 10th 2017Optical coherence tomography (OCT) is an emerging technique for medical imaging that uses light to see deep inside tissue. Rohith Reddy, who is a postdoctoral research fellow at the Harvard Medical School and Massachusetts General Hospital in Boston, has worked to develop an OCT device for noninvasive diagnosis of a precancerous condition, Barrett’s esophagus. Reddy is the winner of the FACSS 2016 Innovation Award. He recently spoke to us about these efforts.
Developing SERS Methods for Drug Detection
November 7th 2016Surface-enhanced Raman scattering (SERS) has the capability of enhancing the signal from analytes present in low concentrations, and the detection of drugs present in human and other samples is an important application of this technique. Roy Goodacre is a Professor of Biological Chemistry in the School of Chemistry at the University of Manchester, and he and his group have been developing SERS methods for analyzing drugs in various solutions, including human biofluids, with the ultimate goal of monitoring dosing and drug therapy. He recently spoke to us about this work.
Using Synchrotron XRF to Map Trace Metals in Biological Systems
November 3rd 2016Metals and metalloids, while essential to living organisms, can, in high concentrations, be toxic. An understanding of how these metals and metalloids are accumulated and transported within plants and animals is possible with the use of synchrotron X-ray fluorescence (SXRF) microtomography. The technique is used in the imaging of major and trace element distributions within natural materials with high spatial resolution. Stefan Vogt of the Argonne National Laboratory in Lemont, Illinois, has been exploring the use of SXRF to detect metal content in biological and other systems. He recently discussed the various challenges, applications, and advantages associated with this technique.
Measuring Wheat Flour Purity Using Quantitative NIR Chemical Imaging
October 13th 2016Isolating material of commercial value from solid natural products presents a challenge for many spectroscopic techniques. Near-infrared (NIR) chemical imaging makes it possible to obtain spectra from individual pixels within a field of view for analysis of complex, heterogeneous mixtures. A team at Kansas State University, led by David Wetzel, has been applying this approach to multiple applications, including the analysis of wheat. In particular, the group has work on alternative methods for the determination of flour and milling stream purity, because outdated methods such as mineral ash residue impurity analysis do not properly reflect the quality of the final products of milling and are dependent upon the soil where the wheat is milled. Mark Boatwright, who is studying for his doctorate under Wetzel, talked to Spectroscopy about some of this work.
FT-IR Microscopy with High Spatial Resolution
August 15th 2016Advances in spatial resolution for Fourier transform infrared (FT-IR) imaging historically have involved the use of a synchrotron source, but new optics have been developed that yield better spectral quality and spatial resolution than are provided by existing synchrotron sources. Kathleen Gough, Professor in the Department of Chemistry at the University of Manitoba, has been working with her group to conduct diagnostic tissue imaging with the new thermal source FT-IR system. She recently spoke to us about these efforts.
Detecting Engineered Nanoparticles in Environmental Samples
July 27th 2016The use of engineered nanoparticles (ENPs) in various applications and consumer products continues to increase, and these nanoparticles require thorough characterization for proper environmental risk assessment. James Ranville, a professor at the Colorado School of Mines, in Golden, Colorado, has been studying colloids and and particles in environmental processes and developing methods to collect and analyze colloids from rivers, reservoirs, mountain streams, soil solutions, and ground waters. He spoke with us about his work using field-flow fractionation–inductively coupled plasma mass spectrometry (FFF-ICP-MS) and ICP-MS for the detection of engineered nanoparticles in environmental samples.
Spectroscopy Interviews: Detecting Disease Pathogens with Surface-Enhanced Raman Spectroscopy
July 12th 2016Currently, there is significant interest in using vibrational spectroscopy techniques for a variety of biomedical applications, and the methods are showing good promise. Karen Faulds, a professor at the University of Strathclyde in Glasgow, has been investigating the application of surface-enhanced Raman spectroscopy (SERS) to the detection of disease pathogens, such as meningitis, and to distinguish related pathogens in a complex matrix. Faulds is the 2016 recipient of the Coblentz Society’s Craver Award, which recognizes the efforts of young professional spectroscopists who have made significant contributions in applied analytical vibrational spectroscopy. This interview is part of a series of interviews with the winners of awards that will be presented at the SciX 2016 conference.
Laser-Ablation ICP-MS Imaging of Geological Samples
June 27th 2016Laser-ablation inductively coupled plasma–mass spectrometry (LA-ICP-MS) is well suited for highly sensitive elemental and isotopic analysis of solid samples. In this technique, a laser beam ablates the sample and generates fine particles that are then transported to the ICP-MS system for rapid elemental analysis. Detlef Günther is Professor for Trace Element and Micro Analysis and Vice President Research and Corporate Relations for ETH Zurich, and he and his group use LA-ICP-MS for two- and three-dimensional imaging of geological samples such as rocks and meteorites. He recently spoke to us about this research.
Spectroscopy on Mars: A Look at What’s Been Uncovered About the Red Planet
June 15th 2016Spectroscopy has played a significant role in the Mars expeditions, including the confirmation of the former presence of water on the Red Planet. Raymond Arvidson, the James S. McDonnell Distinguished University Professor at Washington University in Saint Louis, Missouri, is involved with the various National Aeronautics and Space Administration (NASA) missions to Mars and the spectroscopy incorporated in the instruments sent there. Here, Arvidson discusses those techniques, including a hyperspectral imaging system, an emission spectrometer, and an X-ray spectrometer, and what the results of the missions indicate about Mars so far.
Total Reflection X-Ray Fluorescence Spectrometry for Metals and Nanoparticle Analysis
June 8th 2016Total reflection x-ray fluorescence (TXRF) spectrometry is an energy-dispersive x-ray technique that is used for elemental and chemical analysis, and is especially suitable for small-sample analyses. Ursula Fittschen, an assistant professor at Washington State University, is working on elemental microscopy and micro analysis. She has been using TXRF to analyze stainless steel metal release, and also airborne silver nanoparticles (NPs) from fabrics. Here, she describes the advantages and challenges of this technique.
Forensic Applications of Isotope Ratio Mass Spectrometry
May 4th 2016The isotopic profile of a material refers to the ratios of the stable isotopes of elements contained within, such as 2H/1H, 13C/12C, and 18O/16O. Biological, chemical, and physical processes cause variations in the ratios of stable isotopes; analysis of a material for its distinctive isotopic signature can thus be used to reveal information about its history. Isotope ratio mass spectrometry (IRMS) is a technique used to measure the relative abundance of isotopes in materials. Forensic investigators have used IRMS to measure a variety of materials, such as drugs, explosives, food, and human remains. In a recent web seminar, Lesley Chesson, the president of IsoForensics, Inc., explained how IRMS works and discussed the use of IRMS in forensic science, illustrating her discussion with several case examples.
Addressing the Challenges of Process Raman Spectroscopy
April 14th 2016In recent years, Raman spectroscopy has been applied to process monitoring and control applications in a wide range of application fields, including bioprocessing, pharmaceuticals, food, oil and gas, and oceanography. Brian Marquardt, cofounder and CEO of MarqMetrix, Inc., and director and senior principal engineer with the Center for Process Analysis and Control in the Applied Physics Laboratory at the University of Washington, has more than 15 years of experience with such applications and recently spoke with us about his research.
Novel Optical Spectroscopy Techniques for Analyzing Nanoscale Structures
February 26th 2016Understanding electron- and energy-transfer processes in nanoscale systems is critical both for investigating fundamental energy redistribution mechanisms in nanoscopic media and for developing new devices based on these systems. Ken L. Knappenberger is the recipient of the 2016 Coblentz Award and is an associate professor in the Department of Chemistry and Biochemistry at Florida State University, and he and his group study these processes in nanoscale assemblies by developing and implementing novel optical spectroscopy approaches. He recently spoke to us about this work.
How Are ICP Methods Being Used in the Petroleum and Biofuels Industry?
February 17th 2016Inductively coupled plasma (ICP) techniques, such as ICP coupled with mass spectrometry (ICP-MS) and ICP–optical emission spectroscopy (OES), have seen a lot of growth in recent years for the direct analysis of organic samples such as petroleum and biofuels. José-Luis Todolí, a professor at the University of Alicante in Spain, has conducted several studies in this area, including the elemental determination of metals in bioethanol using ICP-OES, and the use of a torch integrated sample introduction system as well as ICP-MS to analyze petroleum products and biofuels. He recently spoke to us about this work and other projects involving ICP techniques that his group is focused on.
Using SERS to Study How Cells Respond to Pharmaceuticals
February 5th 2016Surface-enhanced Raman spectroscopy (SERS) has made significant progress in recent years (1), and its application to biomedical studies is of particular interest. Colin Campbell of the University of Edinburgh is taking the biomedical application of SERS to a new level by using the technique to make spatially resolved measurements in live three-dimensional (3D) cell cultures to determine the response to drugs during drug discovery operations. For this work, Campbell received a FACSS Innovation Award at the SciX 2015 conference last October. This interview is part of the Spectroscopy¬–SciX interview series.
From Pharmaceutical to Agricultural Applications: What’s New in NIR?
December 7th 2015Near-infrared (NIR) spectroscopy offers quick analysis with no sample preparation for many fields, but it is particularly popular for process monitoring, materials science, and medical uses. NIR has also seen applications in agriculture from the very start of the technique, but new instrument capabilities are poised to offer even more to that field. Benoît Igne, a principal scientist at GlaxoSmithKline in King of Prussia, Pennsylvania, recently spoke to us about his work using NIR and areas where he thinks the technique has growth potential, specifically process analytical technology and agriculture.
Detecting Adulterated Meat with LIBS
December 2nd 2015Economically motivated food adulteration is a problem around the world. The 2013 horsemeat scandal in Europe, in which horsemeat was substituted for beef and pork, did not cause serious health problems, but certainly upset many consumers and led to a desire for increased quality control over meat products. İsmail Hakkı Boyaci of the Food Research Center at Hacettepe University, in Ankara, Turkey, has developed a method using laser-induced breakdown spectroscopy (LIBS) to detect meat adulteration. He recently spoke to us about this work.