Lithium-based batteries are key for moving away from the combustion of fossil fuels at the point of use. ICP-OES and ICP-MS methods can measure trace-element impurities that may affect battery performance.
In this paper, a one-time digestion method for the determination of arsenic (As), antimony (Sb), selenium (Se), and mercury (Hg) in geological samples was established.
The use of high-resolution LIBS imaging requires the reduction of acquisition time. The authors describe a new developed system that accomplishes this goal and can be used in various applications where elemental composition and elemental distribution analysis is required.
How to create trouble-free sample preparation workflow for elemental analysis.
An increasing number of antibiotic residue problems in food have emerged around the world. We examine how SERS is used to identify antibiotic residues in chicken, focusing on doxycycline hydrochloride and tylosin.
This study describes how interference-free, low-level analysis of toxic elements as well as major elements in particulate matter (PM), with an aerodynamic diameter of 2.5 μm or smaller, can be accomplished. Comparison study examples are given for two locations.
This approach provides traceable and reliable quantitative elemental analysis of airborne particles for on-site environmental measurement with portable instrumentation.
This study uses Fourier transform infrared (FT-IR) spectroscopy to analyze how the globular protein ovalbumin's secondary structures transition under varying pH conditions in the presence of the cosolvent xylitol, highlighting the role of noncovalent interactions in these conformational changes.
This study uses hyperspectral imaging (HSI) technology, in synergy with machine learning and deep learning algorithms, to innovate a non-destructive method for the assessment of chicken freshness.
Reliable quantitative FT-IR measurements require that the pathlength be known to within 1%. Pathlength estimations based on nominal spacer thickness are not reliable and require that the actual pathlength be measured for accurate data. We demonstrate how.
With this cooling system, which maintains the chemical composition and temperature of the frozen sample, a higher S/N was achieved for LIBS analysis of a NaCl solution.
Confocal Raman microscopy enables detailed and non-destructive analysis of semiconductors. In the video we present the application of confocal Raman microscopy to analyze material characteristics including doping, stress fields, crystallinity and warpage of a 150 mm (6 inch) silicon carbide (SiC) wafer. To maintain this nanoscale-precision across the macroscopically large x and y dimensions of an entire wafer, we used the WITec alpha300 Semiconductor Edition Raman microscope.
Regulations have been imposed to set legal limits of nitrate and nitrite in water worldwide. In this study, a highly accurate and optimized ultraviolet (UV) spectroscopy method is proposed to simultaneously monitor nitrate and nitrite for rapid determination and continuous monitoring in environmental water applications.
Detecting metal elements in liquid samples cannot be done efficiently by only using LIBS, but when the technique is combined with appropriate membrane materials, rapid analysis of solution samples can be realized.
The results in this study indicate that NIR spectroscopy is a potentially promising approach for the rapid identification of different harvest times of Cabernet Sauvignon grapes, and the proposed technique is helpful for the prediction of ripened and over-ripened Cabernet Sauvignon grapes during the harvest time.
Time-resolved fluorescence spectroscopy reveals much about the structure-induced energy transfer mechanisms of phycobilisomes, the light-harvesting antenna in cyanobacteria.
Plasma spray–deposited metal films are used in many industrial applications. This study shows how high resolution terahertz time-domain spectroscopy (THz-TDS) can be used to analyze and characterize such films.
Inline FT-NIR and offline terahertz Raman imaging analysis are used to characterize active pharmaceutical ingredient (API) crystallinity and to monitor different solid physical states of the API, to control process parameters of hot melt extrusion.
This year’s EAS offers sessions live November 16–19 and on-demand until December 31.
This article highlights the use of nuclear magnetic resonance (NMR) spectroscopy to characterize biomarkers of metabolic syndrome at different stages of progression.
Classification and identification of different wood species are demonstrated using a portable near-infrared spectrometer, combined with four spectral pretreatment methods and three pattern recognition methods. Additional chemometric tools were used for comprehensive evaluation of classification model accuracy and complexity.
We examine the feasibility of FT-NIR for the detection of early fungal infections in citrus.
In this article, the basic principles, advantages, and limitations of different optical techniques for obtaining seed vigor estimates are introduced and reviewed, and the key technology of non-destructive optical detection of single seeds will be discussed.
In this study, in situ Raman spectroscopy was used to detect the formation, growth, and evolution of corrosion inside a salt fog chamber. These results pave the way for monitoring the real-time observation of corrosion on metal surfaces.
A novel approach to NIR spectral sensing, using a miniaturized fully-integrated multipixel array of resonant-cavity-enhanced InGaAs photodetectors, enables sensors with a millimeter-scale footprint and wafer-scale fabrication. This multipixel sensor does not measure the full spectrum, but rather a limited number of spectral regions with limited resolution (50–100 nm).
In celebration of Spectroscopy’s 35th Anniversary, leading experts discuss important issues and challenges in analytical spectroscopy.
The relationship between leaf nitrogen content (LNC) and hyperspectral remote sensing imagery (HYP) was determined to construct an estimation model of the LNC of drip-irrigated sugar beets, to enable real-time monitoring of sugar beet growth and nitrogen management in arid areas.