Authors



Sukanya Sengupta

Latest:

Analysis of Trace Elements as Impurities in Materials Used for Lithium-Ion Battery Production

Lithium-based batteries are key for moving away from the combustion of fossil fuels at the point of use. ICP-OES and ICP-MS methods can measure trace-element impurities that may affect battery performance.



Wen-Zhi Zhao

Latest:

Chemical Vapor Generation Non-Dispersive Atomic Fluorescence Spectrometry Technique for the Determination of Arsenic, Antimony, Selenium, and Mercury in Geological Samples by One-Time Digestion

In this paper, a one-time digestion method for the determination of arsenic (As), antimony (Sb), selenium (Se), and mercury (Hg) in geological samples was established.


S. Hermelin

Latest:

High-Resolution High-Speed LIBS Microscopy

The use of high-resolution LIBS imaging requires the reduction of acquisition time. The authors describe a new developed system that accomplishes this goal and can be used in various applications where elemental composition and elemental distribution analysis is required.



Ning Xu

Latest:

Identifying Doxycycline Hydrochloride and Tylosin in Chicken Using Surface-Enhanced Raman Spectroscopy

An increasing number of antibiotic residue problems in food have emerged around the world. We examine how SERS is used to identify antibiotic residues in chicken, focusing on doxycycline hydrochloride and tylosin.


Tomoko Vincent

Latest:

Analyzing the Elemental Composition of Fine Particulate Matter (PM2.5) Emitted as Air Pollution Using Inductively Coupled Plasma–Mass Spectrometry (ICP-MS)

This study describes how interference-free, low-level analysis of toxic elements as well as major elements in particulate matter (PM), with an aerodynamic diameter of 2.5 μm or smaller, can be accomplished. Comparison study examples are given for two locations.


Armin Gross

Latest:

Reliable Chemical Analysis of Aerosols by Reference-Free X-ray Spectrometry for Monitoring Airborne Particulate Matter

This approach provides traceable and reliable quantitative elemental analysis of airborne particles for on-site environmental measurement with portable instrumentation.


Swenthira Kandasamy

Latest:

FT-IR Analysis of pH and Xylitol Driven Conformational Changes of Ovalbumin–Amide VI Band Study

This study uses Fourier transform infrared (FT-IR) spectroscopy to analyze how the globular protein ovalbumin's secondary structures transition under varying pH conditions in the presence of the cosolvent xylitol, highlighting the role of noncovalent interactions in these conformational changes.


Hu Zhang

Latest:

Detecting Chicken Freshness Utilizing VNIR, SWIR Spectroscopy, and Data Fusion

This study uses hyperspectral imaging (HSI) technology, in synergy with machine learning and deep learning algorithms, to innovate a non-destructive method for the assessment of chicken freshness.


William G. Killian, Jr.

Latest:

A MATLAB Application for Calculation of Cell Pathlength in Absorption Transmission Infrared Spectroscopy

Reliable quantitative FT-IR measurements require that the pathlength be known to within 1%. Pathlength estimations based on nominal spacer thickness are not reliable and require that the actual pathlength be measured for accurate data. We demonstrate how.


Roslinda Zainala

Latest:

Quantitative Analysis of Sodium in Aqueous Samples Using Laser-Induced Breakdown Spectroscopy with a Thermoelectric Cooler as the Sample Preparation Method

With this cooling system, which maintains the chemical composition and temperature of the frozen sample, a higher S/N was achieved for LIBS analysis of a NaCl solution.


Oxford Instruments WITec

Latest:

Full SiC Wafer Imaging - Confocal Raman Microscopy for Compositional, Topographic and Mechanical Analysis

Confocal Raman microscopy enables detailed and non-destructive analysis of semiconductors. In the video we present the application of confocal Raman microscopy to analyze material characteristics including doping, stress fields, crystallinity and warpage of a 150 mm (6 inch) silicon carbide (SiC) wafer. To maintain this nanoscale-precision across the macroscopically large x and y dimensions of an entire wafer, we used the WITec alpha300 Semiconductor Edition Raman microscope.


Qiong Wu

Latest:

Simultaneous Detection of Nitrate and Nitrite Based on UV Absorption Spectroscopy and Machine Learning

Regulations have been imposed to set legal limits of nitrate and nitrite in water worldwide. In this study, a highly accurate and optimized ultraviolet (UV) spectroscopy method is proposed to simultaneously monitor nitrate and nitrite for rapid determination and continuous monitoring in environmental water applications.


Cheng Qian

Latest:

Porous Chitosan Composite Membrane Tandem Laser-Induced Breakdown Spectroscopy for Detection of Metal Elements in Liquid Samples

Detecting metal elements in liquid samples cannot be done efficiently by only using LIBS, but when the technique is combined with appropriate membrane materials, rapid analysis of solution samples can be realized.


He Zhu

Latest:

Prediction of the Harvest Time of Cabernet Sauvignon Grapes Using Near-Infrared Spectroscopy

The results in this study indicate that NIR spectroscopy is a potentially promising approach for the rapid identification of different harvest times of Cabernet Sauvignon grapes, and the proposed technique is helpful for the prediction of ripened and over-ripened Cabernet Sauvignon grapes during the harvest time.


Song Qin

Latest:

Time-resolved Fluorescence Spectroscopy Study of Energy Transfer Dynamics in Phycobilisome of Thermophilic Cyanobacterium Thermosynechococcus vulcanus NIES 2134

Time-resolved fluorescence spectroscopy reveals much about the structure-induced energy transfer mechanisms of phycobilisomes, the light-harvesting antenna in cyanobacteria.


Donald A. Tomalia

Latest:

Terahertz Spectral Characterization of Plasma Spray–Deposited Nickel Film on an Alumina Cylinder

Plasma spray–deposited metal films are used in many industrial applications. This study shows how high resolution terahertz time-domain spectroscopy (THz-TDS) can be used to analyze and characterize such films.


Rui Chen

Latest:

Solid Physical State Transformation in Hot Melt Extrusion Revealed by Inline Near-Infrared (NIR) Spectroscopy and Offline Terahertz (THz) Raman Imaging

Inline FT-NIR and offline terahertz Raman imaging analysis are used to characterize active pharmaceutical ingredient (API) crystallinity and to monitor different solid physical states of the API, to control process parameters of hot melt extrusion.


Cecil Dybowski, PhD

Latest:

The 59th Eastern Analytical Symposium Offers a Virtual Experience in 2020

This year’s EAS offers sessions live November 16–19 and on-demand until December 31.


Óscar Millet

Latest:

Research Using NMR Uncovers New Biomarkers of Metabolic Syndrome

This article highlights the use of nuclear magnetic resonance (NMR) spectroscopy to characterize biomarkers of metabolic syndrome at different stages of progression.


Yong Hao

Latest:

Rapid Identification of Wood Species Based on Portable Near-Infrared Spectrometry and Chemometrics Methods

Classification and identification of different wood species are demonstrated using a portable near-infrared spectrometer, combined with four spectral pretreatment methods and three pattern recognition methods. Additional chemometric tools were used for comprehensive evaluation of classification model accuracy and complexity.



Zhen Xu

Latest:

Detection of the Early Fungal Infection of Citrus by Fourier Transform Near-Infrared Spectra

We examine the feasibility of FT-NIR for the detection of early fungal infections in citrus.


Zhu Mingdong

Latest:

Evaluation and Development Trends of Optical Detection Technology for Seed Vigor

In this article, the basic principles, advantages, and limitations of different optical techniques for obtaining seed vigor estimates are introduced and reviewed, and the key technology of non-destructive optical detection of single seeds will be discussed.


Paul Gattinger

Latest:

In situ Raman Spectroscopy Monitors the Corrosion of Mild Steel in a Salt Fog Chamber

In this study, in situ Raman spectroscopy was used to detect the formation, growth, and evolution of corrosion inside a salt fog chamber. These results pave the way for monitoring the real-time observation of corrosion on metal surfaces.


Rene P. J. van Veldhoven

Latest:

Spectral Sensing Using a Handheld NIR Module Based on a Fully Integrated Sensor Chip

A novel approach to NIR spectral sensing, using a miniaturized fully-integrated multipixel array of resonant-cavity-enhanced InGaAs photodetectors, enables sensors with a millimeter-scale footprint and wafer-scale fabrication. This multipixel sensor does not measure the full spectrum, but rather a limited number of spectral regions with limited resolution (50–100 nm).


Jose M. Costa-Fernandez

Latest:

Nanoparticle-Assisted Analytical Strategies: Pushing the Limits of ICP-MS for Ultrasensitive Detection of Clinical Biomarkers

In celebration of Spectroscopy’s 35th Anniversary, leading experts discuss important issues and challenges in analytical spectroscopy.


Hua Fan

Latest:

Study on Estimating Total Nitrogen Content in Sugar Beet Leaves Under Drip Irrigation Based on Vis-NIR Hyperspectral Data and Chlorophyll Content

The relationship between leaf nitrogen content (LNC) and hyperspectral remote sensing imagery (HYP) was determined to construct an estimation model of the LNC of drip-irrigated sugar beets, to enable real-time monitoring of sugar beet growth and nitrogen management in arid areas.