All News


In this study, surface-enhanced Raman spectroscopy (SERS) and solvent extraction were used to detect aconitine (AC) in various complex matrices using gold nanorod substrates. The experimental results demonstrated that ether efficiently extracted AC from soy sauce as an example complex matrix.

Damodaran Krishnan Achary of University of Pittsburgh highlights how modern NMR education is shifting toward real-world samples and interdisciplinary applications, reflecting the needs of industry and materials science researchers.

Comet in the night sky | Image Credit: © rrudenkois - stock.adobe.com.

This brief article highlights the key takeaways from studying the 3I/ATLAS comet and what it means for space exploration moving forward.

Artist’s rendition of a medical professional utilizing a biosensor to monitor real-time patient health © Leopard -chronicles-stock.adobe.com

This tutorial introduces spectroscopy professionals to the operational principles, practical workflows, and laboratory applications of biosensors. It covers core definitions, biosensor types, transduction methods, nanomaterials-enabled strategies, and optical/electrochemical approaches relevant to spectroscopic analysis. Readers will learn how biosensors integrate biological recognition with physicochemical detection, how to implement them in real-world measurement tasks, and how to avoid common technical pitfalls when translating biosensor theory into laboratory practice.

Full moon on the dark night | Image Credit: © tuiphotoengineer - stock.adobe.com

A recent study establishes how particle size, particle shape, phase angle, and ice abundance influence VNIR spectral signatures, providing a refined framework for accurately detecting and quantifying lunar water ice in polar regions.

Mini-Tutorial: Cleaning Up the Spectrum Using Preprocessing Strategies for FT-IR ATR Analysis. © SITTAKAN -chronicles-stock.adobe.com

This mini-tutorial explores how data preprocessing (DP) transforms raw FT-IR ATR spectra into meaningful, reliable inputs for chemometric modeling. Readers will learn about key DP methods: normalization, scatter correction, centering, scaling, and baseline correction, and how proper selection of these techniques improves accuracy, reproducibility, and interpretability in infrared spectroscopic analysis.

Spectroscopy mini-tutorial: FT-IR principles, practice, and applications © Premium Resource -chronicles-stock.adobe.com

Fourier transform infrared (FT-IR) spectroscopy is a versatile, non-destructive analytical tool used to characterize molecular structures, monitor chemical reactions, and quantify analytes in diverse materials. This mini-tutorial reviews fundamental principles, key operational modes, and practical examples across environmental, biomedical, and industrial applications. Readers will review and learn how to optimize FT-IR methods, interpret spectra, and avoid common pitfalls in data collection and processing.