Data Analytics, Statistics, Chemometrics, and Artificial Intelligence

Latest News


Depiction of modern satellite spectral imaging system © hassan-chronicles-stock.adobe.com

Modern remote sensing technologies have evolved from coarse-resolution multispectral sensors like MODIS and MERIS to high-resolution, multi-band systems such as Sentinel-2 MSI, Landsat OLI, and UAV-mounted spectrometers. These advancements provide greater spectral and spatial detail, enabling precise monitoring of environmental, agricultural, and land-use dynamics.

A welder in protective gear fuses aluminum pieces with precision, © 69-chronicles-stock.adobe.com

A new dual-spectroscopy approach reveals real-time pollution threats in indoor workspaces. Chinese researchers have pioneered the use of laser-induced breakdown spectroscopy (LIBS) and aerosol mass spectrometry to uncover and monitor harmful heavy metal and dust emissions from soldering and welding in real-time. These complementary tools offer a fast, accurate means to evaluate air quality threats in industrial and indoor environments—where people spend most of their time.

A rustic frame of diverse grains, cereals, and ears of corn on a neutral gray background. Generated by AI. | Image Credit: © chanwut - stock.adobe.com

Researchers from Jiangsu University and Zhejiang University of Water Resources and Electric Power have developed a transfer learning approach that significantly enhances the accuracy and adaptability of NIR spectroscopy models for detecting mycotoxins in cereals.

Early version continuum robot arm performing welding in an ultra-modern factory © Jack -stock.adobe.com

A recent review published in Sensors explores the dynamic field of continuum robotics, with a particular focus on the advances in optical sensing technologies. The study, led by researchers from the Technical University of Košice and the University of Texas at Austin, highlights the dominance of optical fiber sensors in tracking robotic shape perception and environmental interactions, demonstrating spectroscopic applications and future potential.

Different types of vegetable oils © alex9500-chronicles-stock.adobe.com

A research team from Nanjing University of Finance and Economics has developed a new analytical model using fluorescence spectroscopy and neural networks to improve the detection of aflatoxin B1 (AFB1) in vegetable oils. The model effectively restores AFB1’s intrinsic fluorescence by accounting for absorption and scattering interferences from oil matrices, enhancing the accuracy and efficiency for food safety testing.

IoT vibration sensors for wind turbines are essential © JohanSwanepoel-chronicles-stock.adobe.com

Researchers have developed a high-sensitivity optical fiber vibration sensor based on Fabry-Perot (F-P) interference, designed to improve wind turbine tower monitoring. This innovation addresses issues with traditional electrical sensors and has strong potential for integration into the Internet of Things (IoT) for real-time structural health monitoring.

Smart farming agriculture concept. Man holding smartphone monitor to track agricultural produce for IoT. © Pcess609-chronicles-stock.adobe.com

A study by researchers at Universidad de Talca in Chile explores the integration of artificial intelligence (AI), the Internet of Things (IoT), and remote sensing to modernize modern farming. The research highlights how these technologies optimize resource use, improve crop yields, and promote sustainable agricultural practices.

A graphical representation of a connected IoT network, with various nodes, devices, and connections. © EwaStudio-chronicles-stock.adobe.com

A recent review by researchers at Nagpur University and Seth Kesarimal Porwal College explores the ever advancing landscape of the Internet of Things (IoT) and its essential components—sensors and actuators. The review paper classifies various IoT sensors and examines their role in integrating the physical and digital worlds to enable smarter devices and enhanced automation.