Data Analytics, Statistics, Chemometrics, and Artificial Intelligence

Latest News


Sunset over a grassland

In this study, we propose a low-altitude unmanned aerial vehicle (UAV) hyperspectral visible near-infrared (vis-NIR) remote sensing hardware platform, which combines efficiency and accuracy for high-precision remote sensing-based ecological surveys and statistical data collection on grassland desertification.

As forensic analysis continues to advance, such as in the understanding of source identification and analysis of trace quantities of bodily fluids, spectroscopic techniques and machine learning are playing a significant role. Igor K. Lednev, a chemistry professor at the University at Albany, SUNY, in Albany, New York, has been working in this field with his team. The analytical methods currently under investigation include Raman spectroscopy, attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy, and advanced chemometric classification and analysis methods. We recently interviewed him about his work.

grape seed oil in a bottle with grapes surrounding it

Given that grape seed oil has shown beneficial effects for consumers, there is a interest in measuring oil quality and potential adulteration. This study demonstrates an effective near-infrared (NIR) spectroscopy method, using a series of machine learning approaches for wavelength variable selection, to rapidly discriminate grape seed oil adulteration.

Chemometrics in Spectroscopy is a collection of column articles that the authors published in Spectroscopy over a period spanning more than two decades. Each article is generally arranged as a chapter in the book, and chapters dealing with the same or similar topics are arranged closely as a section block rather than following the original sequence in the magazine. Although each article or series of articles only discusses one specific topic, collectively, the articles form a comprehensive reference that is a valuable source for readers wanting to learn chemometrics, especially with its applications in spectroscopy.

A newly discovered effect can introduce large errors in many multivariate spectroscopic calibration results. The CLS algorithm can be used to explain this effect. Having found this new effect that can introduce large errors in calibration results, an investigation of the effects of this phenomenon to calibrations using principal component regression (PCR) and partial least squares (PLS) is examined.

The archnemesis of calibration modeling and the routine use of multivariate models for quantitative analysis in spectroscopy is the confounded bias or slope adjustments that must be continually implemented to maintain calibration prediction accuracy over time. A perfectly developed calibration model that predicted well on day one suddenly has to be bias adjusted on a regular basis to pass a simple bias test when predicted values are compared to reference values at a later date. Why does this problem continue to plague researchers and users of chemometrics and spectroscopy?