Mass Spectrometry

Latest News


SJR_sized-848418-1416904095758.jpg

This interview with Steven J. Ray, an Associate Scientist in the Department of Chemistry at Indiana University in Bloomington, Indiana, discusses his work with a new form of mass spectrometry (MS) for analyzing complex samples.

MassSpec4_i4-848037-1416903334211.jpg

Simple, sensitive, rapid, selective, and precise reversed-phase liquid chromatography (LC), electrospray ionization mass spectrometry (ESI-MS), and tandem MS (ESI-MS-MS) methods were developed and validated for the determination of 2-hydroxy-4-(methylthio)-butanoic acid (HMTBA) in bovine serum and sea water matrix. HMTBA is the ?-hydroxy analog of the sulfur-containing amino acid methionine and is extensively used as a methionine supplement in poultry and bovine feed.

MassSpec2_i1_t-842940-1416904315155.jpg

Native mass spectrometry, the method by which noncovalent protein complexes are retained in the gas phase for intact mass analysis, is gaining interest as a method for intact protein characterization. The development of a modified orbital ion trap platform for high-resolution analyses has expanded the role of native mass spectrometry to address the challenges of intact protein characterization.

MassSpec1_i3-842942-1416904300943.jpg

Ionization of small, large, volatile, and nonvolatile compounds with charge states nearly identical to electrospray ionization are produced from a solid matrix or solution with high sensitivity utilizing the vacuum inherent with any mass spectrometer. With the proper matrix, analytes can be analyzed from ambient conditions or by direct introduction into vacuum.

MassSpec3_i3-842939-1416904320666.jpg

The identification of nontargeted species in environmental and commercial samples by mass spectrometry can be very difficult. In this article, authors from Eastman Chemical Company describe their systematic approach for the identification of nontargeted species using nominal and accurate mass data, searching both mass spectral and "spectra-less" databases.

MassSpec4_i1-842941-1416904309735.jpg

In this article, we examine how tandem and tandem hybrid mass spectrometry has opened up new frontiers already. We go further and examine how lesser-known experiments are breaking new ground, with alternative fragmentation techniques, as well as the addition of extra levels of orthogonality by parallel separations techniques.

Mass spectrometry is a powerful analytical tool. Yet researchers and instrument makers continue to push the limits of its resolving power. One such researcher is David E. Clemmer, the Robert & Marjorie Mann Chair and Distinguished Professor of Chemistry at Indiana University in Bloomington, Indiana and the 2014 Anachem Award winner. Clemmer's group has done extensive research to develop and improve ion trapping techniques and ion mobility spectrometry-mass spectrometry (IMS-MS) instruments to analyze biomolecular mixtures and structures.

Everyone loves a list, and the editors of Spectroscopy are no exception! In 2013, Spectroscopy covered a wide array of topics throughout the year to bring you the most relevant information for your work, on topics ranging from selecting the right ICP-MS system to deciding which Raman technique is right for you, from our annual salary survey to calibration transfer. Here is a list of 13 popular articles and columns from 2013

Guido F. Verbeck, an associate professor in the Department of Chemistry at the University of North Texas (Denton, Texas), has been developing a technique called direct analyte-probed nanoextraction (DAPNe). Verbeck is using DAPNe, coupled to nanospray ionization mass spectrometry (MS), in a variety of applications, including forensic analyses. Spectroscopy asked Verbeck about his work with this method and how it is used.

Some central transformative themes and their impact in modern analytical mass spectrometry are discussed, such as isotopic analysis, exact measurements, information processing, and more.

Spectroscopy recently spoke with Dr. Dominic Hare, a senior research officer at the Florey Institute of Neuroscience and Mental Health in Australia, about his work using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to study metals in the brain. His research highlights the role that iron plays in Parkinson's disease in the hopes to better understand the causes of the disease and eventually find an appropriate treatment.