December 4th 2024
Spectroscopy spoke with Uwe Karst, a full professor at the University of Münster in the Institute of Inorganic and Analytical Chemistry, to discuss his research on hyphenated analytical techniques in battery research.
November 27th 2024
Comparing the Capabilities of Time-of-Flight and Quadrupole Mass Spectrometers
July 1st 2010The authors explain some of the primary differences between quadrupole and time-of-flight mass analyzers and provide information regarding the benefits of each in their use for gas chromatography applications.
The Use of Novel Software for the Identification of Trace Compounds in Complex Mixtures
July 1st 2010Many volatile organic compounds (VOCs) found in a variety of consumer products are potentially harmful to human health and the environment. Within industry, to regulate product safety and quality, methods for measuring specific VOCs in a product, typically by thermal desorption gas chromatography–mass spectrometry (TD-GC–MS), are implemented. Such analysis provides a comprehensive VOC profile. However, the nature of some products, such as food, can be chemically complex. Within this complexity, trace-level or coeluting compounds can be difficult or time-consuming to identify. As a potential solution, new software tools are being developed to automate interpretation of the data.
Enhancing Mass Spectral Formula Determination by Heuristic Rules
May 1st 2010A new approach to enhancing the performance of formula identification of true unknowns beyond high mass and spectral accuracy was evaluated. Three heuristic rules on upper limits and ratios of elements were tested for their effectiveness in filtering out false positive formulas with both high- and low-resolution mass spectrometry data. The rule on elements' upper limits was found to be the most effective one in eliminating incorrect formulas.
Ultralow Detection of Estrogenic Compounds by GC–NCI-MS-MS
May 1st 2010A number of clinical situations now call for high-sensitivity measurement of estrogens, including monitoring during female hormone replacement therapy, antiestrogen treatment, and estrogen deficiency in men. Traditional immunoassay methods and liquid chromatography–tandem mass spectrometry (LC–MS-MS) do not provide the sensitivity and selectivity required for these applications. In contrast, a gas chromatography–negative chemical ionization–tandem mass spectrometry (GC–NCI-MS-MS) platform can provide detection limits below 1 pg/mL when used in conjunction with the appropriate derivatization protocol, with very short cycle times.
TOF-MS: A Viable Solution for Crude Oil Extract Analysis
May 1st 2010Crude oil is a generic term for the unrefined flammable liquid that is mined from the ground. It is an extremely varied and very complex medium that can contain many thousands of organic compounds, whose contents and concentrations vary enormously from one sample to another. This article discusses how recent advances in time-of-flight-mass spectrometry coupled with comprehensive two-dimensional gas chromatography is helping the petrochemical industry to characterize crude oils more fully and so provide solutions to common problems experienced during drilling, extraction, and refining.
Translating HPLC Performance Gains of Core-Shell Media to LC–MS Applications
May 1st 2010Adapting the use of "ultrahigh" performance chromatography for liquid chromatography–mass spectrometry (LC–MS) applications requires specific considerations in integrating the instrument platforms. Mobile phase options are limited to volatile buffers, and slow MS sampling rates can limit throughput advantages that such next-generation media offer. High-throughput LC–MS methods of different relevant pharmaceutical and environmental mixtures were developed using ultrahigh performance core-shell media. Such methods were developed using standard HPLC systems and back pressures, showing the ease and utility of using core-shell media for increasing throughput of LC–MS methods.
Branching Out: Mass Spectrometry and the Shape of Biotherapeutics
May 1st 2010Those fond of puns point out that mass spectrometry (MS) has become ever more focused in the last two decades, while at the same time offering ever more information. The dynamic market for biotherapeutics has driven a number of developments, particularly following the paradigm of well-characterized biopharmaceutical products (WCBP) (1,2). Partly as a result of automation and interfacing, those trained in biological or biochemical disciplines now use mass spectrometers routinely. This also means that the sorts of questions asked of MS have changed. Coping with biomolecule heterogeneity is a key challenge, not generally an issue for small molecule drugs. The data complexity means that mass information alone is insufficient. And at the submission stage, regulators are increasingly concerned about tertiary structure and conformation, something that was not previously an analytical requirement (2). Adding polyethylene glycol (PEG) to already heterogeneous molecules to prolong their half-lives in the body raises..
Rapid Chemical Threat Identification by SPME-GC–TMS
April 1st 2010A person-portable gas chromatography–mass spectrometry (GC–MS) system employing a toroidal ion trap mass spectrometry (TMS) detector was used to analyze chemical threat related compounds. Introduction of analytes into the heated injector of the instrument was by solid-phase microextraction (SPME), and fast resistive heating of a low thermal mass (LTM) gas chromatography column assembly provided rapid analysis times. Methodology for positive identification of chemical threats can combine chromatographic retention time, comparison to traditional electron ionization mass spectral libraries, and observation of expected pseudomolecular ions produced through self-chemical ionization. Methods are discussed for sampling by SPME with GC–MS analysis in the field to measure airborne analyte concentrations.
A Study of Matrix Effects on Multiply Charged Compounds
March 1st 2010In preclinical development, the absolute quantification of peptides in biological matrices becomes a challenge due to the limited availability of stable label internal standards and affinity-based cleanup. This puts a renewed emphasis on matrix effects, especially for the bioanalysis of hydrophobic peptides. While the impact of matrix effects has been studied for extensively singly charged small molecules, their effect on multiply charged compounds has yet to be characterized fully. This article discusses initial results from matrix effect experiments in relation to the bioanalysis of hydrophobic peptides and techniques used to minimize matrix effects.
Advances in TOF-MS-Based Screening for Food Safety Residue Analysis with a Positive Approach
March 1st 2010Mass spectrometry plays an increasingly significant role in the analysis of residues and contaminants in food. Here we will illustrate how the combination of ultrahigh-pressure liquid chromatography (UHPLC) and high-resolution time-of-flight-mass spectrometry (TOF-MS) is used to generate a screen of veterinary drug residues in products of animal origin. The use of UHPLC–TOF-MS and dedicated, workflow directed software allows rapid screening for large numbers of residues and automated quantification of positive samples. In addition, we illustrate how the data generated using MSE acquisition mode enable critical structural information to be collected, which offers additional selectivity and confirmatory data for compound identification and facilitates elucidation of the structure of newly discovered compounds.
Comprehensive Characterization of Monoclonal Antibodies Using a Microfluidic Chip-Q-TOF Platform
March 1st 2010Accurate, sensitive, and comprehensive characterization of monoclonal antibodies is an absolute necessity to the pharmaceutical and diagnostic industries to meet regulatory requirements and ensure the efficacy and safety of the final product. Microfluidic chip-based high performance liquid chromatography technology interfaced with the mass accuracy of quadrupole time-of-flight mass spectrometry provides the ability to rapidly and efficiently assess the quality of intact monoclonal antibodies, confirm their amino acid sequence, and determine their glycosylation state, while consuming very small amounts of these precious products.