Near Infrared (NIR) Spectroscopy

Latest News


The future portable and wearable technology © Nicolas - stock.adobe.com

The following is a summary of selected articles published recently in Spectroscopy on the subject of handheld, portable, and wearable spectrometers representing a variety of analytical techniques and applications. Here we take a closer look at the ever shrinking world of spectroscopy devices and how they are used. As spectrometers progress from bulky lab instruments to compact, portable, and even wearable devices, the future of spectroscopy is transforming dramatically. These advancements enable real-time, on-site analysis across diverse industries, from healthcare to environmental monitoring. This summary article explores cutting-edge developments in miniaturized spectrometers and their expanding range of practical applications.

Highlighting artificial intelligence and data analysis applications © Gophotograph - stock.adobe.com

Over the past two years Spectroscopy Magazine has increased our coverage of artificial intelligence (AI), deep learning (DL), and machine learning (ML) and the mathematical approaches relevant to the AI topic. In this article we summarize AI coverage and provide the reference links for a series of selected articles specifically examining these subjects. The resources highlighted in this overview article include those from the Analytically Speaking podcasts, the Chemometrics in Spectroscopy column, and various feature articles and news stories published in Spectroscopy. Here, we provide active links to each of the full articles or podcasts resident on the Spectroscopy website.

Petroleum oil and gas industry. Generated by AI. | Image Credit: © vectorwin - stock.adobe.com.

Researchers in China have developed a novel workflow for near-infrared reflectance spectroscopy (NIRS or NIR) that enhances the detection of low-level petroleum hydrocarbon pollution in soils, revealing new diagnostic features and significantly improving sensitivity for environmental monitoring.

Spectroscopic Measurements of Microplastics and Nanoplastics in Our Environment © trattieritratti - stock.adobe.com

Microplastics (MPs) and nanoplastics (NPs) are emerging contaminants requiring robust analytical techniques for identification and quantification in diverse environmental and biological matrices. This review highlights various spectroscopy methods, such as Raman, FT-IR, NIR, ICP-MS, Fluorescence, X-ray, and NMR detailing their methodologies, sample handling, and applications for characterizing MPs and NPs.

Caution Sign for invisible near-infrared ytterbium laser ©  Seetwo - stock.adobe.com

A team from Auburn University has developed an innovative ultrabroadband near-infrared (NIR) transient absorption (TA) spectrometer capable of detecting across a wide spectral range of 900–2350 nm in a single experiment. This advancement improves the study of ultrafast processes in low-bandgap materials and opens doors to new insights in photochemistry and charge dynamics.

Hazelnuts displayed near an oil bottle of hazelnut oil ©  OBSIMAGES AI - stock.adobe.com

A recent study showcases the potential of Fourier transform near-infrared (FT-NIR) spectroscopy and spatially offset Raman spectroscopy (SORS) in detecting raw material defects in hazelnuts caused by improper storage conditions. FT-NIR spectroscopy proved especially effective, while SORS offered complementary insights in certain scenarios. These spectroscopic methods could modernize the speed and accuracy of hazelnut inspections in the food industry.

Diagram of a catalysis process, illustrating how a catalyst speeds up a chemical reaction without being consumed  ©  Thirawat - stock.adobe.com

A new review highlights the use of ultraviolet–visible–near infrared (UV–vis–NIR) absorption spectroscopy in studying catalytic processes. The research discusses how this technique uncovers reaction mechanisms, structural properties, and reaction kinetics, particularly in heterogeneous and photocatalysis, and explores its potential for broader applications.

Depiction of medical imaging scan of a human hand and forearm ©  cac_tus - stock.adobe.com

Hyperspectral imaging (HSI) is revolutionizing fields such as agriculture, food safety, and medical analysis by providing high-resolution spectral data. This emerging technology is proving invaluable in diverse applications, including plant stress detection, weed discrimination, and flood management. A new review explores HSI’s fundamental principles, applications, and future research directions.

Classification of asteroid spectra by analyzing meteorite spectra © lauritta - stock.adobe.com

A team of researchers has developed a new machine learning (ML) method to classify asteroid spectra by analyzing meteorite spectroscopic data. Using logistic regression, the model accurately grouped meteorites into eight categories, helping to better understand the distribution of asteroid compositions in the asteroid belt. The study, published in Icarus, opens new avenues for predicting asteroid composition using spectroscopy.

Yellow law enforcement tape isolating crime scene. Blurred view of city street, toned in red and blue police car lights | Image Credit: © New Africa - stock.adobe.com

A recent study explores the effectiveness of near-infrared (NIR) and ultraviolet-visible (UV-vis) spectroscopy in determining the time since deposition (TSD) of bloodstains, a critical aspect of forensic investigations. By comparing these two methods, researchers aim to improve the accuracy and reliability of bloodstain dating, with potential implications for real-world forensic applications.

Functional near-infrared spectroscopy (fNIRS) has emerged as a vital tool in brain imaging over the past decade, offering noninvasive, real-time insights into brain function. A recent review study presents a comprehensive bibliometric analysis, revealing the global trends, research hotspots, and future potential of fNIRS in clinical applications, particularly in neurology, psychiatry, pediatric medicine, and sports science.

Using NIR and UV-Vis Spectroscopy in Bloodstain Dating ©  Yeti Studio - stock.adobe.com

A recent study explores the effectiveness of Near-infrared (NIR) and ultraviolet-visible (UV-vis) spectroscopy in determining the time since deposition (TSD) of bloodstains, a critical aspect of forensic investigations. By comparing these two methods, researchers aim to improve the accuracy and reliability of bloodstain dating, with potential implications for real-world forensic applications.